Comparison of Local Geoid Models Using Fast Fourier Transform and Least Squares Collocation in the Remove-Compute-Restore Scheme: A Case Study of Pangkal Pinang

Authors

  • Henri Kuncoro Institut Teknologi Nasional Bandung Author
  • Novandi Resya Riandika Institut Teknologi Nasional Bandung Author

Keywords:

Pangkal Pinang, Geoid, Remove Compute Restore, FFT, LSC

Abstract

The geoid model is crucial for all nations as the primary height reference. Given that numerous countries have developed their geoid models, local geoid modelling is essential for Indonesia. According to the Indonesian Geospatial Reference System (SRGI 2013), which encompasses the national height reference system, it is indicated that not all areas of Indonesia possess a geoid model with a high degree of accuracy. The geoid modelling in Indonesia has been conducted incrementally. In local geoid modelling utilizing gravimetric techniques, specifically within the Remove Compute Restore (RCR) framework, two approaches for ascertaining residual undulation are the Fast Fourier Transform (FFT) Method and the Least Squares Collocation (LSC) Method. This study examines a comparison of the two methods, focusing on the accuracy of the geoid model and the factors that affect its precision. This study's findings demonstrate that the least squares collocation geoid model is the most precise geoid model in the Pangkal Pinang region and its vicinity, achieving an accuracy of ±0.131 m. The accuracy of the Fast Fourier Transform method is ±0.149 m for the 2D Spherical Multiband FFT approach and ±0.159 m for Haagman's 1D Spherical FFT approach.

References

[1] Badan Informasi Geospasial, “Sistem Referensi Geospasial Indonesia 2013,” https://srgi.big.go.id, 2013. https://srgi.big.go.id

[2] D. A. Sarsito, M. Syahrullah, B. Bramanto, H. Andreas, and D. Pradipta, “Application of Geoid and Mean Dynamic Topography Models as an Alternative to the Mean Sea Level Approach in Determining Vertical Datum (Case Study: Java Island and Surrounding),” IOP Conference Series Earth and Environmental Science, vol. 1350, no. 1, p. 012040, Jun. 2024, doi: 10.1088/1755-1315/1350/1/012040.

[3] A. Syetiawan, D. D. Wijaya, and I. Meilano, “Quality control in GNSS reflectometry method for tide observations,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 19, no. 6, p. 1935, Dec. 2021, doi: 10.12928/telkomnika.v19i6.21670.

[4] R. Lestari et al., “Local geoid modeling in the central part of Java, Indonesia, using terrestrial-based gravity observations,” Geodesy and Geodynamics, vol. 14, no. 3, pp. 231–243, Dec. 2022, doi: 10.1016/j.geog.2022.11.007.

[5] Z. A. Udama, S. Claessens, I. M. Anjasmara, and A. N. Syafarianty, “Analysis of different combinations of gravity data types in gravimetric geoid determination over Bali,” Journal of Applied Geodesy, vol. 18, no. 3, pp. 391–405, Nov. 2023, doi: 10.1515/jag-2023-0042.

[6] L. E. Sjöberg, “Geoid model validation and topographic bias,” Journal of Geodetic Science, vol. 12, no. 1, pp. 38–41, Jan. 2022, doi: 10.1515/jogs-2022-0133.

[7] G. S. Marotta and R. M. Vidotti, “Development of a Local Geoid Model at the Federal District, Brazil, Patch by the Remove-Compute-Restore Technique, Following Helmert’s Condensation Method,” Boletim De Ciências Geodésicas, vol. 23, no. 3, pp. 520–538, Sep. 2017, doi: 10.1590/s1982-21702017000300035.

[8] A. Ellmann, S. Märdla, and T. Oja, “The 5 mm geoid model for Estonia computed by the least squares modified Stokes’s formula,” Survey Review, vol. 52, no. 373, pp. 352–372, Mar. 2019, doi: 10.1080/00396265.2019.1583848.

[9] L. Zhong, H. Li, B. Wang, S. Liu, and Q. Wu, “A general model of RCR modification and its geoid determination,” Survey Review, vol. 56, no. 395, pp. 200–210, Jun. 2023, doi: 10.1080/00396265.2023.2218682.

[10] K. P. Schwarz, M. G. Sideris, and R. Forsberg, “The use of FFT techniques in physical geodesy,” Geophysical Journal International, vol. 100, no. 3, pp. 485–514, Mar. 1990, doi: 10.1111/j.1365-246x.1990.tb00701.x.

[11] A. Pahlevi and D. Pangastuti, “Indonesian Geospatial Reference System 2013 and Its Implementation of Positioning,” Jun. 2014. [Online]. Available: https://www.fig.net/resources/proceedings/fig_proceedings/fig2014/papers/ts07a/TS07A_pahlevi_pangastuti_6894_abs.pdf

[12] L. M. Sabri et al., “Perbandingan perhitungan geoid Pulau Jawa dengan integral Stokes dan integral Hotine,” journal-article. [Online]. Available: https://geodesi.ft.undip.ac.id/wp-content/uploads/2018/02/Jurnal_Geodesi_LMS.pdf

[13] B. Triarahmadhana and L. S. Heliani, An evaluation of the use of SRTM data to the accuracy of local GeOID determination: A case study of Yogyakarta Region, Indonesia. 12th Biennial Conference of Pan Ocean Remote Sensing Conference (PORSEC 2014), 2014.

[14] P. Vanicek and E. J. Krakiwsky, Geodesy: the Concepts, 2nd Edition. Elsevier, 2015.

[15] W. A. Heiskanen and H. Moritz, Physical geodesy. San Francisco, United States of America: W.H. Freeman and Company, 1967.

[16] R. Forsberg, T. P. Rooney, and D. H. Eckhardt H., “A Study Of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling,” Air Force Geophysics Laboratory, AFGL-TR-84-0174, Apr. 1984. [Online]. Available: https://apps.dtic.mil/sti/tr/pdf/ADA150788.pdf

[17] A. Kiliçoğlu et al., “Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09),” Studia Geophysica Et Geodaetica, vol. 55, no. 4, pp. 557–578, Oct. 2011, doi: 10.1007/s11200-010-9023-z.

[18] W. E. Featherstone et al., “The AUSGeoid09 model of the Australian Height Datum,” Journal of Geodesy, vol. 85, no. 3, pp. 133–150, Nov. 2010, doi: 10.1007/s00190-010-0422-2.

[19] A. Łyszkowicz, “Quasigeoid for the area of Poland computed by least squares collocation,” Technical Sciences / University of Warmia and Mazury in Olsztyn - Tom Nr 13 (2010) - BazTech - Yadda, 2010. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BAR0-0056-0029

Downloads

Published

13/01/2025

How to Cite

[1]
“Comparison of Local Geoid Models Using Fast Fourier Transform and Least Squares Collocation in the Remove-Compute-Restore Scheme: A Case Study of Pangkal Pinang”, jse, vol. 10, no. 1, Jan. 2025, Accessed: Feb. 22, 2025. [Online]. Available: https://jse.serambimekkah.id/index.php/jse/article/view/735

Similar Articles

11-17 of 17

You may also start an advanced similarity search for this article.