Kajian Literatur Penggunaan Data Satelit GPM-IMERG pada Aplikasi Hidrologi

Authors

  • Rafika Andari Institut Teknologi Padang Author
  • Nurhamidah Universitas Andalas Author

Keywords:

GPM-IMERG , bias correction , hydrology, Quantile Mapping, flood modeling

Abstract

Global Precipitation Measurement (GPM) – Integrated Multi-satellite Retrievals for GPM (IMERG) satellite data is one of the main sources of global rainfall estimates with high spatial and temporal resolution. This study aims to identify spatial, temporal, and methodological trends in research related to the use of GPM-IMERG between 2014 and 2024, as well as to assess the effectiveness of various bias correction methods in improving data accuracy and to examine the main hydrological applications utilising these data. A systematic review of over twenty scientific publications reveals that the use of GPM-IMERG has grown considerably since 2017, particularly in humid tropical regions such as Southeast Asia, South Asia, and Latin America. Methodologically, there has been a shift towards integrating GPM-IMERG with physically based hydrological models (e.g. SWAT, HEC-HMS and VIC) and machine learning algorithms (e.g. Random Forest and XGBoost) to improve the prediction of rainfall and river discharge. Analysis also shows that Quantile Mapping (QM) and Distribution Mapping (DM) provide the best correction performance, increasing NSE values by 20–35% in mountainous areas. Linear Scaling (LS) remains effective in tropical lowlands. The most prevalent hydrological applications are discharge modelling, flood analysis and drought monitoring. Key research gaps include the absence of long-term studies (>10 years), limitations in topographically complex regions and the lack of multi-sensor integration.

References

[1] T. Chauhan, R. Gowri, S. Ghosh, and P. P. Mujumdar, “Advances in surface water hydrology research in India,” Proc. Indian Natl. Sci. Acad., vol. 90, no. 2, pp. 482–493, 2024, doi: 10.1007/s43538-024-00234-9.

[2] S. M. Kassaye, T. Tadesse, G. Tegegne, and A. T. Hordofa, “Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin , Ethiopia,” Environ. Syst. Res., pp. 1–15, 2024, doi: 10.1186/s40068-023-00328-1.

[3] P. Hynds, A. Nasr, J. O. Dwyer, P. D. Hynds, A. E. Nasr, and J. O. Dwyer, “Evaluation of hydrometric network efficacy and user requirements in the Republic of Ireland via expert opinion and statistical analysis Evaluation of hydrometric network e ffi cacy and user requirements in the Republic of Ireland via expert opinion and st,” J. Hydrol., vol. 574, pp. 851–861, 2019, doi: 10.1016/j.jhydrol.2019.04.086.This.

[4] D. Ocio, T. Beskeen, and K. Smart, “Fully distributed hydrological modelling for catchment- wide hydrological data verification,” Hydrol. Res., pp. 1–15, 2019, doi: 10.2166/nh.2019.006.

[5] S. Xie and Y. Zhu, “Prediction of the Discharge Flow in a Small Hydropower Station without Hydrological Data Based on SWAT Model,” 2022.

[6] T. G. Andualem, D. A. Malede, and M. Tebebal, “Performance evaluation of integrated multi-satellite retrieval for global Performance evaluation of integrated multi ‑ satellite retrieval for global precipitation measurement products over Gilgel Abay watershed, Upper Blue Nile Basin, Ethiopia,” Model. Earth Syst. Environ., vol. 6, no. September, pp. 1853–1861, 2020, doi: 10.1007/s40808-020-00795-w.

[7] Z. Wang, R. Zhong, C. Lai, and J. Chen, “Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility,” Atmos. Res., vol. 196, pp. 151–163, 2017, doi: 10.1016/j.atmosres.2017.06.020.

[8] M. Ouaba, M. E. Saidi, and J. Bin Alam, “Flood modeling through remote sensing datasets such as LPRM soil moisture and GPM ‑ IMERG precipitation : A case study of ungauged basins across Flood modeling through remote sensing datasets such as LPRM soil moisture and GPM ‑ IMERG precipitation : A case study of ungauged basins across Morocco,” Earth Sci. Informatics, no. November, 2022, doi: 10.1007/s12145-022-00904-6.

[9] L. Yu, G. Leng, A. Python, and J. Peng, “A Comprehensive Evaluation of Latest GPM IMERG V06 Early , Late and Final Precipitation Products across China,” pp. 1–22, 2021.

[10] X. Lyu and Z. Li, “Evaluation of GPM IMERG Satellite Precipitation Products in Event-Based Flood Modeling over the Sunshui River Basin in Southwestern China,” 2024.

[11] N. M. C. Partarini, “Evaluasi hujan berbasis satelit gpm-imerg di wilayah sungai halmahera utara untuk pengelolaan sumber daya air 1,” J. Tek. Sipil dan Arsit., vol. 30, no. 2, pp. 143–149, 2025.

[12] X. Wang, Y. Ding, C. Zhao, and J. Wang, “Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau,” Atmos. Res., vol. 218, pp. 347–363, 2019, doi: 10.1016/j.atmosres.2018.12.011.

[13] Mamenun, H. Pawitan, and A. Sophaheluwakan, “Validasi dan koreksi data satelit trmm pada tiga pola hujan di indonesia,” J. Meteorol. dan Geofis., 2014, [Online]. Available: http://202.90.199.54/jmg/index.php/JMG/article/view/169.

[14] A. Retalis, D. Katsanos, F. Tymvios, and S. Michaelides, “Comparison of GPM IMERG and TRMM 3B43 Products over Cyprus,” Remote Sens., 2020, [Online]. Available: https://www.mdpi.com/845510.

[15] Tang, Y. Ma, and D. Long, “Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales,” J. Hydrol., vol. 533, pp. 152–167, 2016, doi: 10.1016/j.jhydrol.2015.12.008.

[16] S. Chen, J. Hu, Z. Zhang, A. Behrangi, and ..., “Hydrologic evaluation of the TRMM multisatellite precipitation analysis over Ganjiang Basin in humid southeastern China,” IEEE J. …, 2015, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7307945/.

[17] M. A. Azka, P. A. Sugianto, A. K. Silitonga, and I. R. Nugraheni, “Uji Akurasi Produk Estimasi Curah Hujan Satelit Gpm Imerg Di Surabaya, Indonesia,” J. Sains Teknol. Modif. Cuaca, vol. 19, no. 2, p. 83, 2018, doi: 10.29122/jstmc.v19i2.3153.

[18] A. F. A. Putra, S. . M. T. Prof. Dr. Eng. Donny Harisuseno, and S. . M. . I. . A. E. Dr. Ir. Runi Asmaranto, “Evaluasi Dan Koreksi Data Curah Hujan Satelit GPM (Global Precipitation Measurement) Terhadap Data Stasiun Hujan Observasi Di DAS Dodokan Nusa Tenggara Barat,” vol. 04, no. 02, pp. 1313–1326, 2024, [Online]. Available: http://repository.ub.ac.id/id/eprint/216873/.

[19] A. Mondal, V. Lakshmi, and H. Hashemi, “Intercomparison of trend analysis of multisatellite monthly precipitation products and gauge measurements for river basins of India,” Journal of Hydrology. Elsevier, 2018, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022169418306863.

[20] M. Adib Azka, T. Kadar Dzikiro, U. Kusuma Wardani, and A. Fadlan Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, “Uji Akurasi Data Model Estimasi Curah Hujan Satelit TRMM, GSMAP, Dan GPM Selama Periode Siklon Tropis Cempaka dan Dahlia Di Wilayah Jawa Validation of TRMM, GSMAP, and GPM Modeling Data Accuracy During Tropical Cyclone Event in Java Region,” Semin. Nas. Penginderaan Jauh, no. July 2018, pp. 983–991, 2018.

[21] R. Andari, N. Nurhamidah, D. Daoed, and M. Marzuki, “Validation of TRMM and GPM Satellite Data Using Daily Precipitation Observations,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 2, pp. 555–562, 2024, doi: 10.18517/ijaseit.14.2.18980.

[22] T. Yuono and E. Mulyandari, “Kajian Penggunaan Data Hujan Satelit Trmm Untuk Perencanaan Talang Air Irigasi Pada Daerah Irigasi Ngarum,” J. Tek. Sipil dan Arsit., vol. 26, no. 1, pp. 41–48, 2021, doi: 10.36728/jtsa.v26i1.1243.

[23] X. Li, X. Ye, and C. Xu, “Assessment of Satellite-Based Precipitation Products for Estimating and Mapping Rainfall Erosivity in a Subtropical Basin, China,” Remote Sens., vol. 14, no. 17, 2022, doi: 10.3390/rs14174292.

[24] E. Hidayah et al., “Performance of GPM-IMERG satellite precipitation for rainfall-runoff modeling in Indonesia,” Water Pract. Technol., vol. 19, no. 10, pp. 3909–3928, 2024, doi: 10.2166/wpt.2024.240.

[25] A. P. Siddaway, A. M. Wood, and L. V Hedges, “How to Do a Systematic Review : A Best Practice Guide for Conducting and Reporting Narrative Reviews , Meta-Syntheses,” pp. 747–770, 2019.

[26] M. H. Le, V. Lakshmi, J. Bolten, and D. D. Bui, “Adequacy of Satellite-derived Precipitation Estimate for Hydrological Modeling in Vietnam Basins,” J. Hydrol., vol. 586, 2020, doi: 10.1016/j.jhydrol.2020.124820.

[27] S. Prakash, “A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region,” J. Hydrol., vol. 556, pp. 865–876, 2018, doi: 10.1016/j.jhydrol.2016.01.029.

[28] J. Wang, W. . Peterson, and D. . Wolff, “Validation of satellite-based precipitation products from TRMM to GPM,” Remote Sens., vol. 13, no. 9, 2021, doi: 10.3390/rs13091745.

[29] H. Li, Y. Zhang, H. Lei, and X. Hao, “Machine Learning-Based Bias Correction of Precipitation Measurements at High Altitude,” pp. 1–21, 2023.

[30] H. Solanki and A. Kushwaha, “Improving Streamflow Prediction Using Multiple Hydrological Models and Machine Learning Methods,” 2025, doi: 10.1029/2024WR038192.

[31] X. Wu, J. Su, W. Ren, H. Lü, and F. Yuan, Statistical comparison and hydrological utility evaluation of ERA5-Land and IMERG precipitation products on the Tibetan Plateau. 2023.

[32] W. Xie, S. Yi, C. Leng, D. Xia, M. Li, and Z. Zhong, “The evaluation of IMERG and ERA5 ‑ Land daily precipitation over China with considering the influence of gauge data bias,” Sci. Rep., pp. 1–22, 2022, doi: 10.1038/s41598-022-12307-0.

[33] X. Min, C. Yang, and N. Dong, “Merging satellite and gauge rainfalls for flood forecasting of two catchments under different climate conditions,” Water (Switzerland), vol. 12, no. 3, pp. 1–17, 2020, doi: 10.3390/w12030802.

[34] J. Gautam, O. Sungmin, D. Vinod, A. Mahesha, and T. Karnataka, “Supplementary Information on Evaluation of GPM IMERG satellite precipitation for rainfall-runoff modeling in Great Britain M . Tech . Student , Department of Water Resources and Ocean Engineering , National Institute Department of Climate and Energy Systems Engineering , Ewha Womans University , South Research Scholar , Department of Water Resources and Ocean Engineering , National Professor , Department of Water Resources and Ocean Engineering , National Institute of,” pp. 4–7.

[35] H. Lei, H. Zhao, T. Ao, and W. Hu, “Quantifying the Reliability and Uncertainty of Satellite , Reanalysis , and Merged Precipitation Products in Hydrological Simulations over the Topographically Diverse Basin in,” 2023.

[36] A. F. A. Putra and R. Asmaranto, “Evaluasi dan Koreksi Data Curah Hujan Satelit GPM ( Global Precipitation Measurement ) Terhadap Data Stasiun Hujan,” J. Teknol. dan Rekayasa Sumber Daya Air, vol. 04, no. 02, pp. 1313–1326, 2024, doi: 10.21776/ub.jtresda.2024.004.02.110.

[37] C. Mo, M. Zhang, Y. Ruan, J. Qin, and Y. Wang, “Accuracy Analysis of IMERG Satellite Rainfall Data and Its Application in Long-term Runoff Simulation,” Water, vol. 12, no. 2177, 2020.

[38] E. Ahmed, “Hydrologic assessment of TRMM and GPM-based precipitation products in transboundary river catchment (Chenab River, Pakistan),” Water (Switzerland), vol. 12, no. 7, 2020, doi: 10.3390/w12071902.

[39] P. Gilewski, “Inter-comparison of Rain-Gauge, Radar, and Satellite (IMERG GPM) precipitation estimates performance for rainfall-runoff modeling in a mountainous catchment in Poland,” Water (Switzerland), vol. 10, no. 11, 2018, doi: 10.3390/w10111665.

[40] R. Li et al., “Evaluation and hydrological application of TRMM and GPM precipitation products in a tropical monsoon basin of Thailand,” Water, 2019, [Online]. Available: https://www.mdpi.com/448674.

[41] H. Ji, D. Peng, Y. Gu, Y. Liang, and X. Luo, “Evaluation of multiple satellite precipitation products and their potential utilities in the Yarlung Zangbo River Basin,” no. 0123456789, pp. 1–15, 2022, doi: 10.1038/s41598-022-17551-y.

[42] K. K. Wójcicka, A. Pilarska, and D. Kamiński, “Meteorological drought in the upper Noteć catchment area ( Central Poland ) in the light of NDVI and SPI indicators,” Appl. Water Sci., vol. 14, no. 8, pp. 1–18, 2024, doi: 10.1007/s13201-024-02215-1.

[43] Y. Hiraga et al., “- 2024 - Hiraga - Model‐based estimation of long‐duration design precipitation for basins with.pdf,” J. Flood Risk Manag., vol. 17, no. 12992, 2024.

Downloads

Published

01/01/2026

How to Cite

[1]
“Kajian Literatur Penggunaan Data Satelit GPM-IMERG pada Aplikasi Hidrologi”, jse, vol. 11, no. 1, Jan. 2026, Accessed: Jan. 27, 2026. [Online]. Available: https://jse.serambimekkah.id/index.php/jse/article/view/1435

Similar Articles

11-20 of 74

You may also start an advanced similarity search for this article.