Studi Biodegradabilitas Plastik Ramah Lingkungan oleh Larva Tenebrio molitor dan Bioaktivator EM4
Keywords:
biodegradasi, plastik, mikroorganisme, t. molitor, kinetikaAbstract
The amount of plastic waste continues to increase with population growth. Decomposition of plastic waste takes tens to hundreds of years. The use of conventional plastics, especially plastic bags that are commonly used by the public, continues to increase, which has a negative impact on the environment. Handling plastic waste using biological methods is an easier, cheaper, and safer solution for the environment. In the degradation process, microorganisms play an important role as decomposers of waste using enzymes in their bodies. However, recent research has revealed that macroorganisms, particularly insects, can accelerate biodegradation. This study examines the biodegradability of environmentally friendly plastics by summarizing scenarios from recent research on plastic biodegradation by macroorganisms and microorganisms. Macroorganisms that have been widely studied for plastic degradation include Tenebrio molitor larvae (T. molitor) and microorganisms derived from EM4 bioactivators. In addition, this study also summarizes the review of the mechanisms, parameters, approaches to biodegradation outcome variables, comparison of the effectiveness of biodegradators using rate biodegradation modeling, and biodegradation reactors, as well as product parameters that are considered so that are considered safe for the environment
References
[1] P. Kautish, R. Sharma, S. K. Mangla, F. Jabeen, and U. Awan, “Understanding choice behavior towards plastic consumption: An emerging market investigation,” Resour Conserv Recycl, vol. 174, Nov. 2021, doi: 10.1016/j.resconrec.2021.105828.
[2] P. G. C. Nayanathara Thathsarani Pilapitiya and A. S. Ratnayake, “The world of plastic waste: A review,” Cleaner Materials, vol. 11, p. 100220, Mar. 2024, doi: 10.1016/J.CLEMA.2024.100220.
[3] S. S. Ali et al., “Plastic wastes biodegradation: Mechanisms, challenges and future prospects,” Aug. 01, 2021, Elsevier B.V. doi: 10.1016/j.scitotenv.2021.146590.
[4] H. Alhazmi, F. H. Almansour, and Z. Aldhafeeri, “Plastic waste management: A review of existing life cycle assessment studies,” May 02, 2021, MDPI AG. doi: 10.3390/su13105340.
[5] Z. Terzopoulou and D. N. Bikiaris, “Biobased plastics for the transition to a circular economy,” Mater Lett, vol. 362, p. 136174, May 2024, doi: 10.1016/J.MATLET.2024.136174.
[6] A. Beltrán-Sanahuja, A. Benito-Kaesbach, N. Sánchez-García, and C. Sanz-Lázaro, “Degradation of conventional and biobased plastics in soil under contrasting environmental conditions,” Science of The Total Environment, vol. 787, p. 147678, Sep. 2021, doi: 10.1016/J.SCITOTENV.2021.147678.
[7] M. Cucina, “The lesser of two evils: Enhancing biodegradable bioplastics use to fight plastic pollution requires policy makers interventions in Europe,” Environ Impact Assess Rev, vol. 103, p. 107230, Nov. 2023, doi: 10.1016/J.EIAR.2023.107230.
[8] S. Kumari, A. Rao, M. Kaur, and G. Dhania, “Petroleum-Based Plastics Versus Bio-Based Plastics: A Review,” Sep. 01, 2023, Technoscience Publications. doi: 10.46488/NEPT.2023.v22i03.003.
[9] A. Surendren, A. K. Mohanty, Q. Liu, and M. Misra, “A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives,” 2022, Royal Society of Chemistry. doi: 10.1039/d2gc02169b.
[10] X. G. Yang, P. P. Wen, Y. F. Yang, P. P. Jia, W. G. Li, and D. S. Pei, “Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects,” Jan. 06, 2023, Frontiers Media SA. doi: 10.3389/fmicb.2022.1001750.
[11] N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, and J. E. Nava-Saucedo, “Polymer biodegradation: Mechanisms and estimation techniques – A review,” Chemosphere, vol. 73, no. 4, pp. 429–442, Sep. 2008, doi: 10.1016/J.CHEMOSPHERE.2008.06.064.
[12] M. Tania and V. Anand, “The implementation of microbes in plastic biodegradation,” 2023, Springer. doi: 10.1007/s43994-023-00077-y.
[13] M. Artru and A. Lecerf, “Slow degradation of compostable plastic carrier bags in a stream and its riparian area,” Ann Limnol, vol. 55, 2019, doi: 10.1051/limn/2019017.
[14] A. Aulia, R. Azizah, L. Sulistyorini, and M. A. Rizaldi, “Literature Review: Dampak Mikroplastik Terhadap Lingkungan Pesisir, Biota Laut dan Potensi Risiko Kesehatan,” Jurnal Kesehatan Lingkungan Indonesia, vol. 22, no. 3, pp. 328–341, Oct. 2023, doi: 10.14710/jkli.22.3.328-341.
[15] S. V. Afshar, A. Boldrin, T. F. Astrup, A. E. Daugaard, and N. B. Hartmann, “Degradation of biodegradable plastics in waste management systems and the open environment: A critical review,” Jan. 01, 2024, Elsevier Ltd. doi: 10.1016/j.jclepro.2023.140000.
[16] A. Antelava, A. Constantinou, A. Bumajdad, G. Manos, R. Dewil, and S. M. Al-Salem, “Identification of Commercial Oxo-Biodegradable Plastics: Study of UV Induced Degradation in an Effort to Combat Plastic Waste Accumulation,” J Polym Environ, vol. 28, no. 9, pp. 2364–2376, Sep. 2020, doi: 10.1007/s10924-020-01776-x.
[17] D. Il Park, Y. Dong, S. Wang, S. J. Lee, and H. J. Choi, “Rheological Characteristics of Starch-Based Biodegradable Blends,” Polymers (Basel), vol. 15, no. 8, Apr. 2023, doi: 10.3390/polym15081953.
[18] M. Ramos et al., “Controlled release, disintegration, antioxidant, and antimicrobial properties of poly (lactic acid)/thymol/nanoclay composites,” Polymers (Basel), vol. 12, no. 9, Sep. 2020, doi: 10.3390/POLYM12091878.
[19] M. R. Havstad, “Biodegradable plastics,” in Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions, Elsevier, 2020, pp. 97–129. doi: 10.1016/B978-0-12-817880-5.00005-0.
[20] P. C. Thapliyal, “Utilization of chemical additives to enhance biodegradability of plastics,” Biodegradability of Conventional Plastics: Opportunities, Challenges, and Misconceptions, pp. 259–281, Jan. 2023, doi: 10.1016/B978-0-323-89858-4.00006-3.
[21] P. Tziourrou, S. Kordella, Y. Ardali, G. Papatheodorou, and H. K. Karapanagioti, “Microplastics formation based on degradation characteristics of beached plastic bags,” Mar Pollut Bull, vol. 169, p. 112470, Aug. 2021, doi: 10.1016/J.MARPOLBUL.2021.112470.
[22] A. Heimowska, “Environmental Degradation of Oxo-Biodegradable Polyethylene Bags,” Water (Switzerland), vol. 15, no. 23, Dec. 2023, doi: 10.3390/w15234059.
[23] G. Solano, D. Rojas-Gätjens, K. Rojas-Jimenez, M. Chavarría, and R. M. Romero, “Biodegradation of plastics at home composting conditions,” Environmental Challenges, vol. 7, Apr. 2022, doi: 10.1016/j.envc.2022.100500.
[24] M. C. Lavagnolo, F. Ruggero, A. Pivato, C. Boaretti, and A. Chiumenti, “Composting of starch-based bioplastic bags: Small scale test of degradation and size reduction trend,” Detritus, vol. 12, pp. 57–65, 2020, doi: 10.31025/2611-4135/2020.14008.
[25] S. S. Yang et al., “Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization,” Science of the Total Environment, vol. 756, Feb. 2021, doi: 10.1016/j.scitotenv.2020.144087.
[26] B. Y. Peng, Z. Chen, J. Chen, X. Zhou, W. M. Wu, and Y. Zhang, “Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: A sustainable approach for waste management,” J Hazard Mater, vol. 416, Aug. 2021, doi: 10.1016/j.jhazmat.2021.125803.
[27] V. Goel, P. Luthra, G. S. Kapur, and S. S. V. Ramakumar, “Biodegradable/Bio-plastics: Myths and Realities,” Oct. 01, 2021, Springer. doi: 10.1007/s10924-021-02099-1.
[28] S. M. Safwat and M. E. Matta, “Environmental applications of Effective Microorganisms: a review of current knowledge and recommendations for future directions,” Dec. 01, 2021, Springer Science and Business Media B.V. doi: 10.1186/s44147-021-00049-1.
[29] P. Bulak, K. Proc, A. Pytlak, A. Puszka, B. Gawdzik, and A. Bieganowski, “Biodegradation of different types of plastics by tenebrio molitor insect,” Polymers (Basel), vol. 13, no. 20, Oct. 2021, doi: 10.3390/polym13203508.
[30] B. Y. Peng et al., “Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae,” Environ Int, vol. 145, Dec. 2020, doi: 10.1016/j.envint.2020.106106.
[31] J. Liu et al., “Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome,” Chemosphere, vol. 304, p. 135263, Oct. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.135263.
[32] W. Gao et al., “Microbial Degradation of (Micro)plastics: Mechanisms, Enhancements, and Future Directions,” Fermentation, vol. 10, no. 9, p. 441, Aug. 2024, doi: 10.3390/fermentation10090441.
[33] J. Abraham, E. Ghosh, P. Mukherjee, and A. Gajendiran, “Microbial degradation of low density polyethylene,” Environ Prog Sustain Energy, vol. 36, no. 1, pp. 147–154, Jan. 2017, doi: 10.1002/ep.12467.
[34] N. Raddadi and F. Fava, “Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation,” Aug. 20, 2019, Elsevier B.V. doi: 10.1016/j.scitotenv.2019.04.419.
[35] S. S. Yang and W. M. Wu, “Biodegradation of Plastics in Tenebrio Genus (Mealworms),” in Handbook of Environmental Chemistry, vol. 95, Springer Science and Business Media Deutschland GmbH, 2020, pp. 385–422. doi: 10.1007/698_2020_457.
[36] I. Rossetti, F. Conte, and G. Ramis, “Kinetic Modelling of Biodegradability Data of Commercial Polymers Obtained under Aerobic Composting Conditions,” Eng, vol. 2, no. 1, pp. 54–68, Mar. 2021, doi: 10.3390/eng2010005.
[37] S. Yu, O. Grant Clark, and J. J. Leonard, “Influence of free air space on microbial kinetics in passively aerated compost,” Bioresour Technol, vol. 100, no. 2, pp. 782–790, Jan. 2009, doi: 10.1016/j.biortech.2008.06.051.
[38] E. Walling and C. Vaneeckhaute, “Novel simple approaches to modeling composting kinetics,” J Environ Chem Eng, vol. 9, no. 3, p. 105243, Jun. 2021, doi: 10.1016/J.JECE.2021.105243.
[39] E. Walling, A. Trémier, and C. Vaneeckhaute, “A review of mathematical models for composting,” Jul. 15, 2020, Elsevier Ltd. doi: 10.1016/j.wasman.2020.06.018.
[40] H. S. Auta, C. U. Emenike, B. Jayanthi, and S. H. Fauziah, “Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment,” Mar Pollut Bull, vol. 127, pp. 15–21, Feb. 2018, doi: 10.1016/j.marpolbul.2017.11.036.
[41] R. Kulcu, “New kinetic modelling parameters for composting process,” J Mater Cycles Waste Manag, vol. 18, no. 4, pp. 734–741, Sep. 2016, doi: 10.1007/s10163-015-0376-9.
[42] L. Zhu et al., “Alternating ventilation accelerates the mineralization and humification of food waste by optimizing the temperature-oxygen-moisture distribution in the static composting reactor,” Bioresour Technol, vol. 393, p. 130050, Feb. 2024, doi: 10.1016/J.BIORTECH.2023.130050.
[43] R. N. da S. Vilela et al., “Effects of aeration and season on the composting of slaughterhouse waste,” Environ Technol Innov, vol. 27, p. 102505, Aug. 2022, doi: 10.1016/J.ETI.2022.102505.
[44] F. A. Azis, M. Rijal, H. Suhaimi, and P. E. Abas, “Patent Landscape of Composting Technology: A Review,” Jun. 01, 2022, MDPI. doi: 10.3390/inventions7020038.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Fika Nur Amaliah, Mochammad Chaerul (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.