Sustainability and Energy Potential of Extrusion Processed Biomass Briquettes: A Systematic Literature Review

Authors

  • Dody Bimo Aji Universitas Sarjanawiyata Tamansiswa Author
  • Ahmad Janan Febrianto janan Universitas Sarjanawiyata Tamansiswa Author
  • Reza Bayu Kurniawan Universitas Sarjanawiyata Tamansiswa Author
  • Gahar Albani Rasyid Universitas Sarjanawiyata Tamansiswa Author
  • Iqbal Maulana Universitas Sarjanawiyata Tamansiswa Author

Keywords:

biomass, extrusion briquettes, renewable energy, sustainability

Abstract

The global energy crisis and the increasing volume of agro-industrial waste have accelerated the development of environmentally friendly and sustainable biomass-based alternative energy sources. Extrusion technology has emerged as a promising approach for converting biomass waste into high-quality energy briquettes with enhanced thermal performance and minimal environmental impact. This study aims to analyze the energy potential and sustainability contributions of extrusion-based biomass briquettes through a Systematic Literature Review (SLR) approach, providing a multidimensional thematic understanding of recent research trends. The review follows the PRISMA protocol and utilizes the Scopus database, systematically selecting 30 scientific articles published between 2019 and 2025 based on predefined inclusion and exclusion criteria. The analysis focuses on feedstock characteristics, processing technologies, energy outputs, and contributions to environmental, economic, and social sustainability. The findings reveal that agro-industrial residues such as rice husks, straw, and food waste, when processed through extrusion with natural binders, produce briquettes with high calorific values, low emissions, and efficient combustion performance. This approach also promotes waste reduction, cost efficiency, and the empowerment of community-based renewable energy enterprises. The study concludes that extrusion technology holds strategic potential in supporting the transition toward renewable energy and achieving sustainable development goals, applicable to both industrial and household energy scales.

References

[1] P. K. Ozili and E. Ozen, “Global Energy Crisis,” in The Impact of Climate Change and Sustainability Standards on the Insurance Market, Wiley, 2023, pp. 439–454. doi: 10.1002/9781394167944.ch29.

[2] B. H. Kreps, “The Rising Costs of Fossil‐Fuel Extraction: An Energy Crisis That Will Not Go Away,” The American Journal of Economics and Sociology, vol. 79, no. 3, pp. 695–717, May 2020, doi: 10.1111/ajes.12336.

[3] S. E. Hosseini, “Fossil fuel crisis and global warming,” in Fundamentals of Low Emission Flameless Combustion and Its Applications, Elsevier, 2022, pp. 1–11. doi: 10.1016/B978-0-323-85244-9.00001-0.

[4] S. Singh, “Energy Crisis and Climate Change,” in Energy, Wiley, 2021, pp. 1–17. doi: 10.1002/9781119741503.ch1.

[5] P. F. Borowski, “Mitigating Climate Change and the Development of Green Energy versus a Return to Fossil Fuels Due to the Energy Crisis in 2022,” Energies (Basel), vol. 15, no. 24, p. 9289, Dec. 2022, doi: 10.3390/en15249289.

[6] S. U. Yunusa, E. Mensah, K. Preko, S. Narra, A. Saleh, and S. Sanfo, “A comprehensive review on the technical aspects of biomass briquetting,” Biomass Convers Biorefin, vol. 14, no. 18, pp. 21619–21644, Sep. 2024, doi: 10.1007/s13399-023-04387-3.

[7] S. Yu, V. Lew, W. Ma, Z. Bao, and J. L. Hao, “Unlocking key factors affecting utilization of biomass briquettes in Africa through SWOT and analytic hierarchy process: A case of Madagascar,” Fuel, vol. 323, p. 124298, Sep. 2022, doi: 10.1016/j.fuel.2022.124298.

[8] K. Roman and E. Grzegorzewska, “Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization,” Energies (Basel), vol. 17, no. 24, p. 6392, Dec. 2024, doi: 10.3390/en17246392.

[9] B. V. Bot, P. J. Axaopoulos, E. I. Sakellariou, O. T. Sosso, and J. G. Tamba, “Energetic and economic analysis of biomass briquettes production from agricultural residues,” Appl Energy, vol. 321, p. 119430, Sep. 2022, doi: 10.1016/j.apenergy.2022.119430.

[10] P. Dinesha, S. Kumar, and M. A. Rosen, “Biomass Briquettes as an Alternative Fuel: A Comprehensive Review,” Energy Technology, vol. 7, no. 5, May 2019, doi: 10.1002/ente.201801011.

[11] “An Overview on the Production of Bio-briquettes from Agricultural Wastes: Methods, Processes, and Quality,” Journal of Agricultural and Food Engineering, vol. 3, no. 1, pp. 1–17, Mar. 2022, doi: 10.37865/jafe.2022.0036.

[12] Yuliati et al., “The Organic Waste Processing as an Alternative Energy Source of Bio- Briquettes For Kedung Klinter Citizen Surabaya,” ABDIMAS: Jurnal Pengabdian Masyarakat, vol. 7, no. 3, pp. 1364–1372, Jul. 2024, doi: 10.35568/abdimas.v7i3.4872.

[13] Z. Wang et al., “Research on the improvement of carbon neutrality by utilizing agricultural waste: Based on a life cycle assessment of biomass briquette fuel heating system,” J Clean Prod, vol. 434, p. 140365, Jan. 2024, doi: 10.1016/j.jclepro.2023.140365.

[14] R. S. Bello and M. A. Onilude, “Effects of critical extrusion factors on quality of high-density briquettes produced from sawdust admixture,” Mater Today Proc, vol. 38, pp. 949–957, 2021, doi: 10.1016/j.matpr.2020.05.468.

[15] H. M. P. Marreiro, R. S. Peruchi, R. M. B. P. Lopes, S. L. F. Andersen, S. A. Eliziário, and P. Rotella Junior, “Empirical Studies on Biomass Briquette Production: A Literature Review,” Energies (Basel), vol. 14, no. 24, p. 8320, Dec. 2021, doi: 10.3390/en14248320.

[16] S. Vaish, N. K. Sharma, and G. Kaur, “A review on various types of densification/briquetting technologies of biomass residues,” IOP Conf Ser Mater Sci Eng, vol. 1228, no. 1, p. 012019, Mar. 2022, doi: 10.1088/1757-899X/1228/1/012019.

[17] J. S. Tumuluru and E. Fillerup, “Briquetting characteristics of woody and herbaceous biomass blends: Impact on physical properties, chemical composition, and calorific value,” Biofuels, Bioproducts and Biorefining, vol. 14, no. 5, pp. 1105–1124, Sep. 2020, doi: 10.1002/bbb.2121.

[18] O. B. Aamiri, R. Thilakaratne, J. S. Tumuluru, and J. Satyavolu, “An ‘In-Situ Binding’ Approach to Produce Torrefied Biomass Briquettes,” Bioengineering, vol. 6, no. 4, p. 87, Sep. 2019, doi: 10.3390/bioengineering6040087.

[19] M. P. P. Granado, A. M. T. Gadelha, D. S. Rodrigues, G. C. Antonio, and A. C. De Conti, “Effect of torrefaction on the properties of briquettes produced from agricultural waste,” Bioresour Technol Rep, vol. 21, p. 101340, Feb. 2023, doi: 10.1016/j.biteb.2023.101340.

[20] M. A. Waheed, O. A. Akogun, and C. C. Enweremadu, “An overview of torrefied bioresource briquettes: quality-influencing parameters, enhancement through torrefaction and applications,” Bioresour Bioprocess, vol. 9, no. 1, p. 122, Nov. 2022, doi: 10.1186/s40643-022-00608-1.

[21] T. Sithole et al., “A review of the combined torrefaction and densification technology as a source of renewable energy,” Alexandria Engineering Journal, vol. 82, pp. 330–341, Nov. 2023, doi: 10.1016/j.aej.2023.09.080.

[22] A. Ali and R. K. Sahdev, “Briquette Production from Agricultural and Solid Waste: A Sustainable Solution to Achieve Net Zero Emissions,” 2025, pp. 135–161. doi: 10.1007/978-981-96-0861-4_10.

[23] T. Espinoza-Tellez et al., “Agricultural, forestry, textile and food waste used in the manufacture of biomass briquettes: a review,” Scientia Agropecuaria, vol. 11, no. 3, pp. 427–437, Aug. 2020, doi: 10.17268/sci.agropecu.2020.03.15.

[24] S. Ullah, R. S. Noor, Sanaullah, and T. Gang, “Analysis of biofuel (briquette) production from forest biomass: a socioeconomic incentive towards deforestation,” Biomass Convers Biorefin, vol. 13, no. 3, pp. 1–15, Feb. 2023, doi: 10.1007/s13399-021-01311-5.

[25] S. Y. Kpalo, M. F. Zainuddin, L. A. Manaf, and A. M. Roslan, “A Review of Technical and Economic Aspects of Biomass Briquetting,” Sustainability, vol. 12, no. 11, p. 4609, Jun. 2020, doi: 10.3390/su12114609.

[26] L. Esquiaqui, S. D. F. de Oliveira Miranda Santos, and C. M. L. Ugaya, “A systematic review of densified biomass products life cycle assessments,” International Journal of Environmental Science and Technology, vol. 20, no. 8, pp. 9311–9334, Aug. 2023, doi: 10.1007/s13762-022-04752-1.

[27] D. A. L. Silva, R. A. P. Filleti, R. Musule, T. T. Matheus, and F. Freire, “A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America,” Renewable and Sustainable Energy Reviews, vol. 157, p. 112042, Apr. 2022, doi: 10.1016/j.rser.2021.112042.

[28] F. Romero-Perdomo and M. Á. González-Curbelo, “Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review,” Sustainability, vol. 15, no. 6, p. 5026, Mar. 2023, doi: 10.3390/su15065026.

[29] D. A. L. Silva, L. Vásquez-Ibarra, A. C. Farrapo Junior, and R. Musule Lagunes, “Comparative social hotpots analysis of biomass pellets in Brazil, Chile, and Mexico in a circular bioeconomy context,” Int J Life Cycle Assess, vol. 30, no. 6, pp. 1363–1378, Jun. 2025, doi: 10.1007/s11367-024-02333-7.

[30] H. M. P. Marreiro, R. S. Peruchi, R. M. B. P. Lopes, S. L. F. Andersen, S. A. Eliziário, and P. Rotella Junior, “Empirical Studies on Biomass Briquette Production: A Literature Review,” Energies (Basel), vol. 14, no. 24, p. 8320, Dec. 2021, doi: 10.3390/en14248320.

[31] O. F. Obi, R. Pecenka, and M. J. Clifford, “A Review of Biomass Briquette Binders and Quality Parameters,” Energies (Basel), vol. 15, no. 7, p. 2426, Mar. 2022, doi: 10.3390/en15072426.

[32] R. Picchio et al., “Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation,” Energies (Basel), vol. 13, no. 11, p. 2937, Jun. 2020, doi: 10.3390/en13112937.

[33] O. F. Obi, T. O. Olugbade, J. I. Orisaleye, and R. Pecenka, “Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria,” Energies (Basel), vol. 16, no. 24, p. 7966, Dec. 2023, doi: 10.3390/en16247966.

Downloads

Published

06/01/2026

How to Cite

[1]
“Sustainability and Energy Potential of Extrusion Processed Biomass Briquettes: A Systematic Literature Review”, jse, vol. 11, no. 1, Jan. 2026, Accessed: Jan. 22, 2026. [Online]. Available: https://jse.serambimekkah.id/index.php/jse/article/view/1494

Similar Articles

1-10 of 206

You may also start an advanced similarity search for this article.