Rancang Bangun Prototype Dekanter dengan Sistem Elektrokoagulasi untuk Proses Pemisahan Gliserol dalam Crude Biodiesel
Keywords:
Biodiesel, Elektrokoagulasi, Stacked-disk elektroda, Gliserol, Efisiensi separasiAbstract
This study aims to examine the effectiveness of an electrocoagulation (EC) system in biodiesel purification using a combination of iron rod and aluminum disk electrodes in a cone-bottom decanter, compared to conventional gravity decantation. The apparatus design includes a 4-liter working volume, 1 cm electrode spacing, and operation at 15 V AC for 1 hour. The results indicate that EC significantly accelerates glycerol separation, requiring only 1 hour compared to gravity decantation, which takes over 24 hours. The glycerol separation efficiency with EC reached 98.49%, higher than that of gravity decantation (97.70%). Biodiesel produced via EC yielded a total glycerol content of 0.19%, meeting the SNI standards (< 0.24%), whereas gravity decantation resulted in 0.29%. Other parameters, such as density (0.86 g/mL), viscosity (5.8 cSt), water content (0.008%), and %FAME (98.36%), also complied with the standards. In conclusion, the electrocoagulation system with a stacked disk electrode configuration is more effective in accelerating separation and improving biodiesel quality.
References
[1] H. Niawanti, “Helda Niawanti Review Perkembangan Metode Produksi dan Teknologi Pemurnian dalam Pembuatan Biodiesel Review Perkembangan Metode Produksi dan Teknologi Pemurnian dalam Pembuatan Biodiesel Development of Production Method and Purification Technology in Maki,” J. Chemurg., vol. 04, no. 1, p. 27, 2020.
[2] R. Ampairojanawong, A. Boripun, S. Ruankon, T. Suwanasri, and T. Kangsadan, “Development of Purification Process Using Electrocoagulation Technique for Biodiesel Produced via Homogeneous Catalyzed Transesterification Process of Refined Palm Oil,” E3S Web Conf., vol. 141, 2020, doi: 10.1051/e3sconf/202014101010.
[3] J. U. Putra, L. Kalsum, and Y. Bow, “Effect of DC Voltage on Prototype of Biodiesel Electrostatic Separator with Glycerin from Waste Cooking Oil,” Indones. J. Fundam. Appl. Chem., vol. 3, no. 3, pp. 89–93, 2018, doi: 10.24845/ijfac.v3.i3.89.
[4] R. Ampairojanawong, A. Boripun, S. Ruankon, T. Suwanasri, K. Cheenkachorn, and T. Kangsadan, “Separation Process of Biodiesel-Product Mixture from Crude Glycerol and Other Contaminants Using Electrically Driven Separation Technique with AC High Voltage,” Electrochem, vol. 4, no. 1, pp. 123–144, 2023, doi: 10.3390/electrochem4010011.
[5] Bappeda Banda Aceh, Statistik Banda Aceh 2017. Banda Aceh, 2018.
[6] D. Yuliana and H. Irawan, “Sight-Glass Degradation in Urea Carbamate Solution,” Indones. J. Eng. Sci., vol. 3, no. 1, pp. 041–045, 2021, doi: 10.51630/ijes.v3i1.34.
[7] P. I. Omwene and M. Kobya, “Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study,” Process Saf. Environ. Prot., vol. 116, pp. 34–51, 2018, doi: 10.1016/j.psep.2018.01.005.
[8] P. Menesklou, H. Nirschl, and M. Gleiss, “Dewatering of finely dispersed calcium carbonate-water slurries in decanter centrifuges: About modelling of a dynamic simulation tool,” Sep. Purif. Technol., vol. 251, p. 117287, 2020, doi: 10.1016/j.seppur.2020.117287.
[9] J. N. Hakizimana et al., “Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches,” Desalination, vol. 404, pp. 1–21, 2017, doi: 10.1016/j.desal.2016.10.011.
[10] M. Y. A. Mollah, P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” J. Hazard. Mater., vol. 114, no. 1–3, pp. 199–210, 2004, doi: 10.1016/j.jhazmat.2004.08.009.
[11] E. S. B. H. Hmida, H. Abderrazak, and T. Ounissi, “Electrocoagulation,” Adv. Sci. Technol. Innov., vol. Part F2460, pp. 227–237, 2024, doi: 10.1007/978-3-031-48228-1_15.
[12] F. Y. AlJaberi and W. T. Mohammed, “The Most Practical Treatment Methods for Wastewaters: A Systematic Review,” Mesopotamia Environ. J., vol. 5, no. 1, pp. 1–28, 2018, [Online]. Available: www.bumej.com
[13] W. Sakkamas, A. Boripun, R. Ampairojanawong, S. Ruankon, T. Suwanasri, and T. Kangsadan, “Electrocoagulation with AC Electrical Current at Low Voltage for Separation of Crude Glycerol from Biodiesel Product Mixture,” E3S Web Conf., vol. 141, 2020, doi: 10.1051/e3sconf/202014101011.
[14] A. H. Jauharoh, A. Nurmiyanto, and A. Yulianto, “Perencanaan Instalasi Pengolahan Air Limbah (Ipal) Pada Industri Elektroplating (Studi Kasus Kegiatan Elektroplating X) Di Yogyakarta,” J. Sains &Teknologi Lingkung., vol. 12, no. 1, pp. 25–44, 2020, doi: 10.20885/jstl.vol12.iss1.art3.
[15] Badan Standarisasi Nasional, “Standar Nasional Indonesia 7182:2015 Biodiesel,” Badan Standarisasi Nas., no. 1, pp. 1–88, 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Larisa Mandalini, Diva Stivano, Dyah Nirmala, Addin Akbar (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.











