Combination of Aeration-Adsorption Using Diffuser Aerator and Palmyra Palm Shell Activated Carbon For Groundwater Quality Improvement

Authors

  • Anggit Salis Media Utami Environmental Engineering Department, Universitas Pembangunan Nasional Veteran Jawa Timur Author
  • Mohamad Mirwan Environmental Engineering Department, Universitas Pembangunan Nasional Veteran Jawa Timur Author
  • Rizka Novembrianto Environmental Engineering Department, Universitas Pembangunan Nasional Veteran Jawa Timur Author

Keywords:

aeration, adsorption, activated carbon, palmyra palm shell, groundwater quality

Abstract

This study examines the use of a combined aeration-adsorption process utilizing activated carbon derived from Borassus flabellifer (palmyra palm shell) to improve groundwater quality. The aeration process increases dissolved oxygen (DO) levels, facilitating the oxidation of metal contaminants such as iron (Fe) and manganese (Mn). Meanwhile, the activated carbon is used to adsorb any remaining contaminants that are not fully oxidized. The results show that with a 60-minute aeration time, the DO concentration increased to 6.6 mg/L, and Fe and Mn concentrations were reduced by 53.6% and 7.7%, respectively. In the adsorption phase, optimal conditions were achieved at a flow rate of 10 L/h and an adsorption media height of 45 cm, resulting in Fe removal of 63.19%, Mn removal of 99.25%, TDS reduction of 15.51%, and TOC reduction of 17.61%. These findings support the use of the combined aeration-adsorption process as a more environmentally friendly and efficient method for groundwater treatment.

References

[1] D. Lapworth et al., “Groundwater quality: global challenges, emerging threats and novel approaches,” Hydrogeol. J., vol. 31, no. 1, pp. 15–18, 2023, doi: 10.1007/s10040-022-02542-0.

[2] A. A. Nainggolan, R. Arbaningrum, A. Nadesya, D. J. Harliyanti, and M. A. Syaddad, “Alat Pengolahan Air Baku Sederhana Dengan Sistem Filtrasi,” Widyakala J., vol. 6, p. 12, 2019, doi: 10.36262/widyakala.v6i0.187.

[3] I. S. Anggraeni and L. E. Yuliana, “Pembuatan Karbon Aktif Dari Limbah Tempurung Siwalan (Borassus Flabellifer L.) Dengan Menggunakan Aktivator Seng Klorida (Zncl2) Dan Natrium Karbonat (Na2co3),” Institut Teknologi Sepuluh Nopember, 2015.

[4] D. S. Mavinic and J. K. Bewtra, “Mass Transfer of Oxygen in Diffused Aeration Systems,” Can. J. Civ. Eng., vol. 1, no. 1, pp. 71–84, Sep. 1974, doi: 10.1139/l74-006.

[5] F. Zulya et al., “Perancangan Cascade Aerator Untuk Menurunkan Parameter Besi Dan Mangan Dalam Pengolahan Air Sumur,” J. Teknol. Lingkung. UNMUL, vol. 6, no. 2, p. 18, 2022, doi: 10.30872/jtlunmul.v6i2.9712.

[6] L. Febrina and A. Ayuna, “Studi Penurunan Kadar Besi (Fe) Dan Mangan (Mn) Dalam Air Tanah Menggunakan Saringan Keramik,” vol. 7, no. 1, 2015.

[7] A. Lutfihani, “Analisis Penurunan Kadar Besi (Fe) Dengan Menggunakan Tray Aerator Dan Diffuser Aerator,” Institut Teknologi Sepuluh Nopember, 2015.

[8] K. Xiao et al., “Effect of Concentrations of Fe2+ and Fe3+ on the Corrosion Behavior of Carbon Steel in Cl− and SO42− Aqueous Environments,” Met. Mater. Int., vol. 27, no. 8, pp. 2623–2633, 2021, doi: 10.1007/s12540-019-00590-y.

[9] J. Huang and H. Zhang, “Redox reactions of iron and manganese oxides in complex systems,” Front. Environ. Sci. Eng., vol. 14, no. 5, p. 76, 2020, doi: 10.1007/s11783-020-1255-8.

[10] R. Yousef, H. Qiblawey, and M. H. El-Naas, “Adsorption as a Process for Produced Water Treatment: A Review,” Processes, vol. 8, no. 12. 2020, doi: 10.3390/pr8121657.

[11] A. Bahtiar, I. D. Faryuni, and M. I. Jumarang, “Adsorbsi Logam Fe Menggunakan Adsorben Karbon Kulit Durian Teraktivasi Larutan Kalium Hidroksida,” Prism. Fis., vol. III, no. 01, pp. 5–8, 2015.

[12] G. A. Wardani, A. N. Octavia, M. Fathurohman, T. Hidayat, and E. Nofiyanti, “Arang Aktif Ampas Tebu Termodifikasi Kitosan sebagai Adsorben Tetrasiklin: Pemanfaatan Metode Kolom,” KOVALEN J. Ris. Kim., vol. 8, no. 3, pp. 280–291, 2022, doi: 10.22487/kovalen.2022.v8.i3.16090.

[13] O. V Belyaeva, E. S. Mikhailova, I. V Timoshchuk, A. K. Gorelkina, N. V Gora, and N. S. Golubeva, “Adsorption of Manganese(II) from Aqueous Solution by Activated Carbon Granules,” Coke Chem., vol. 66, no. 11, pp. 569–575, 2023, doi: 10.3103/S1068364X23600124.

[14] N. C. Husain et al., “Chemical properties and breakthrough adsorption study of activated carbon derived from carbon precursor from carbide industry,” ASEAN J. Chem. Eng., vol. 23, no. 2, pp. 240–254, 2023, doi: 10.22146/ajche.80035.

[15] S. Oko, Mustafa, A. Kurniawan, and E. S. B. Palulun, “Pengaruh Suhu dan Konsentrasi Aktivator HCl terhadap Karakteristik Karbon Aktif dari Ampas Kopi,” Metana Media Komun. Rekayasa Proses dan Teknol. Tepat Guna, vol. 17, no. 1, pp. 15–21, 2021.

[16] M. Wasilewska, A. Derylo-Marczewska, and A. W. Marczewski, “Comprehensive Studies of Adsorption Equilibrium and Kinetics for Selected Aromatic Organic Compounds on Activated Carbon,” Molecules, vol. 29, no. 9. 2024, doi: 10.3390/molecules29092038.

[17] N. Nuryoto, R. Hartono, and R. Rahmayetty, “Pengolahan Air Menggunakan Proses Demineralisasi dengan Memanfaatkan Resin Penukar Ion: Studi Pengaruh Laju Alir dan Tinggi Resin,” J. Ilmu Lingkung., vol. 22, no. 2, pp. 393–400, 2024, doi: 10.14710/jil.22.2.393-400.

[18] A. Rifai, D. Rita, K. Hartaja, O. Sulaeman, and I. Setiadi, “Pengaruh Tekanan pada Reverse Osmosis terhadap Penyisihan Kadar Ion Klorida ( Cl - ) dan Total Dissolved Solids ( TDS ) pada Pengolahan Air Payau Effect of Pressure on Reverse Osmosis to Removed Chloride Ion ( Cl - ) and Total,” vol. 25, no. 2, pp. 300–307, 2024.

[19] Fatimah, S. Hardianti, and S. Octaviannus, “Kinerja Aktivasi dan Impregnasi Fly Ash sebagai Adsorben Fenol,” J. Tek. Kim. USU, vol. 10, no. 2, pp. 70–76, 2021, doi: 10.32734/jtk.v10i2.5883.

[20] T. Widayatno et al., “Adsorpsi Logam Berat (Pb) dari Limbah Cair dengan Adsorben Arang Bambu Aktif,” J. Teknol. Bahan Alam, vol. 1, no. 1, pp. 17–23, 2017.

[21] H. Widwiastuti, C. Bisri, and B. Rumhayati, “Pengaruh Massa Adsorben dan Waktu Kontak terhadap Adsorpsi Fosfat menggunakan Kitin Hasil Isolasi dari Cangkang Udang,” Semin. Nas. Iinovasi dan Apl. Tek. di Ind., pp. 93–98, 2019.

[22] E. Sulistyawati, W. W. Nandari, A. R. Nurchasanah, and K. K. Dewi, “Kinetika Adsorpsi Mikrokapsul Kitosan Taut Silang Kalium Persulfat terhadap Zat Warna Methyl Orange,” J. Rekayasa Proses, vol. 14, no. 1, pp. 47–59, 2020, doi: 10.22146/jrekpros.50634.

[23] R. Wulandari, C. A. Riyanto, and Y. Martono, “Kinerja Karbon Aktif Daun Eceng Gondok pada Penurunan Kadar Fosfat Artifisial dan Surfaktan dalam Limbah Detergen,” ALCHEMY J. Penelit. Kim., vol. 19, no. 2, p. 149, 2023, doi: 10.20961/alchemy.19.2.65626.149-161.

[24] A. Husin and A. Hasibuan, “Studi Pengaruh Variasi Konsentrasi Asam Posfat (H3PO4) dan Waktu Perendaman Karbon terhadap Karakteristik Karbon Aktif dari Kulit Durian,” J. Tek. Kim. USU, vol. 9, no. 2, pp. 80–86, 2020, doi: 10.32734/jtk.v9i2.3728.

Downloads

Published

01/01/2025

How to Cite

[1]
“Combination of Aeration-Adsorption Using Diffuser Aerator and Palmyra Palm Shell Activated Carbon For Groundwater Quality Improvement”, jse, vol. 10, no. 1, Jan. 2025, Accessed: Jan. 10, 2025. [Online]. Available: https://jse.serambimekkah.id/index.php/jse/article/view/583

Similar Articles

71-80 of 206

You may also start an advanced similarity search for this article.