Potential Utilization of Palm Oil Liquid Waste as Downstream Agroindustry Products with Proximate Test and β-Carotene Concentration
Keywords:
β-carotene, CPO waste, palm oil, poultry feed, reaction orderAbstract
Since 2006, Indonesia has led global production and export of palm-based edible oils. Government policies focused on advancing agriculture and agro-industries, particularly in downstream product development, provide opportunities to increase the economic value of these products, including palm oil products. Efforts to enhance downstream products include maximizing all palm oil potentials, including its waste. Global CPO production based on 2024 data is 79.6 million tons per year, with Indonesia contributing 59%. The potential waste is also very large, including the final waste which still contains around 20-25% oil and 3-5% phytonutrients. Proximate analysis and β-carotene content studies are used to evaluate the potential of CPO liquid waste for poultry feed. Proximate analysis results show low nutrient levels, including protein (<0.04%), carbohydrates (1.37%), total carbohydrates (<0.02%), total energy (5.20%), and crude fiber (<0.02%), making it unsuitable as a poultry feed substitute. However, based on β-carotene data, the waste can be used as an additive in poultry feed if stored for less than 28 days. The β-carotene degradation process follows zero-order reaction at heating and storage conditions (under room and dark storage).
References
[1] Azhari, D.H. (2018). Hilirisasi Kelapa Sawit Kinerja, Kendala, dan Prospek. Forum Penelitian Agro Ekonomi, Vol. 36 No. 2, Desember 2018: 81-95 DOI:http://dx.doi.org/10.21082/fae.v36n2.2018.81-95.
[2] GAPKI. (2022). Strategi dan kebijakan pengembangan industri hilir minyak sawit Indonesia. https://gapki.id/news/2422/strategi-dan-kebijakan-pengembangan-industri-hilir-minyak-sawit-indonesia. Accessed June 15, 2022.
[3] Statista. 2022. Palm Oils: Indonesia’s “Red Gold”. https://cdn.statcdn.com/Infographic/images/normal/20114.jpeg.
[4] USDA (2024). Palm Oil Explorer.
https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000
[5] Harahap, I.S., Wahyuningsih, P., dan Amri, Y. (2020). Analisis kandungan beta karoten pada CPO (Crude Palm Oil) di Pusat Penelitian Kelapa Sawit (PPKS) Medan menggunakan spektrofotometri UV-Vis. Quimica: Jurnal Kimia Sains dan Terapan Volume 2, Nomor 1, April 2020. DOI: 10.33059/jq.v2i1.2616.
[6] Barbara, A.I.O., Hurtado, M.C., Mata, M.C.S. (2006). Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and b-carotene in vegetables. Food Chemistry 95 (2006) 328–336. doi:10.1016/j.foodchem.2005.02.028.
[7] Varzakas, T., and Kiokias , S. (2016). HPLC Analysis and Determination of Carotenoid Pigments in Commercially Available Plant Extracts. Current Research in Nutrition and Food Science Vol. 4(Special Issue 1), 01-14 (2016). DOI: 10.12944/CRNFSJ.4.Special-Issue1.01
[8] AOAC. (1995). Official Method of Analysis (16th ed). Virginia: The Association of Official Agricultural Chemists.
[9] SNI 01 3931 2006 tentang Pakan ayam ras pedaging masa akhir (broiler finisher)
[10] Hasibuan, H.A., Siahaan, D., Rivani, M., dan Panjaitan , F.R. (2008). Kajian Kandungan Karoten pada Crude Palm Oil di Pabrik Pengolahan Kelapa Sawit (PKS). Warta PPKS Vol. 16(1): 15-21.
[11] Hasibuan, A.A., dan Harjanto, S. (2009). Kajian lanjutan kandungan karoten pada crude palm oil Indonesia. Jurnal Standarisasi. DOI: http://dx.doi.org/10.31153/js.v11i3.677.
[12] Sahidin, Matsjeh, S., dan Nuryanto, E. (2000). Degradasi β-karoten dari minyak sawit mentah oleh panas. Jurnal Penelitian Kelapa Sawit, 2000, 8(1) 39-50.
[13] Byers, J. (1983). Isolation and identification of the polyenes formed during the thermal degradation of β, β-carotene. J. Organic Chemisty. Vol.48: 1515-1522.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Karnadi, Adiarso, Dyah Iswantini, Sri Mulijani (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.