Pemanfaatan Model LandGem Untuk Potensi Gas Metana di TPAS Sekoto Menjadi Sumber Energi

Authors

  • Sekar Nur Habibah Mahiroh Program Studi Teknik Lingkungan, Universitas Pembangunan Nasional "Veteran" Jawa Timur Author
  • R. Mohammad Alghaf Dienullah Program Studi Teknik Lingkungan, Universitas Pembangunan Nasional "Veteran" Jawa Timur Author
  • Abdillah Akmal Karami Program Studi Teknik Lingkungan, Universitas Islam Negeri Sunan Ampel Jawa Timur Author
  • Sekarsari Wibowo Program Studi Teknik Pengolahan Limbah, Politeknik Perkapalan Negeri Surabaya Author

Keywords:

Gas metana, sampah organik, TPAS Sekoto, LandGem, Sekoto landfill

Abstract

Landfills generate methane gas (CH₄) as a result of the anaerobic decomposition of organic waste. This gas has the potential to serve as a renewable energy source if managed properly. This study aims to analyze the methane gas emission potential from the Sekoto landfill using the Landfill Gas Emission Model (LandGEM) and convert it into electricity and LPG. Annual waste generation data from 2021 to 2026 was used as input for the LandGEM model to estimate methane gas emissions. The modeling results indicate that peak methane production will occur in 2027, with a total of 4,247,951 m³/year. The potential electrical energy generated from this methane gas reaches 349,421,156.64 kWh per year, equivalent to 39,888.26 MWh. Additionally, the potential conversion of methane gas to LPG is estimated at 1,954,057.46 kg of LPG per year or approximately 5,353 kg per day. Utilizing methane from the Sekoto landfill as an alternative energy source not only contributes to renewable energy supply but also reduces greenhouse gas emissions that impact global warming. With a more efficient gas harvesting system and adequate processing infrastructure, methane gas can be converted into a more beneficial energy source for the community. This study confirms that optimizing landfill gas management can enhance energy sustainability while mitigating the environmental impact caused by methane emissions.

References

[1] Direktorat Bina Teknik Balai Keamanan Bendungan, “Pedoman Bendungan Limbah Tambang,” 2004.

[2] A. Winardi, N. E. Mochtar, and P. T. K. Sari, “Perencanaan Sanitary Landfill dan Lapisan Dasar Landfill pada Tempat Pembuangan Akhir (TPA) Sekoto-Kabupaten Kediri,” J. Tek. ITS, vol. 11, no. 1, 2022, doi: 10.12962/j23373539.v11i1.82062.

[3] U. Congge, S. Bahri, and N. Nurhidayat, “Efektivitas Sistem Controlled Landfill dalam Penanganan Sampah di Dinas Lingkungan Hidup dan Kehutanan Kabupaten Sinjai,” TheJournalish Soc. Gov., vol. 4, no. 2, pp. 190–194, 2023, doi: 10.55314/tsg.v4i2.476.

[4] KLHK RI (Kementrian Lingkungan Hidup dan Kehutanan Republik Indonesia), “Komposisi Sampah,” SIPSN (Sistem Inf. Pengelolaan Sampah Nasional), pp. 1–21, 2022, [Online]. Available: https://sipsn.menlhk.go.id/sipsn/public/data/komposisi

[5] D. P. Widyatama, “Prediksi Gas Metana, Karbon Dioksida Dan Hidrogen Sulfida Dalam Proses Biogas Dari Sampah Organik Di Tpa Talangagung Kabupaten Malang,” 2021.

[6] L. A. N. W. Nurjaya and T. Agung Rachmanto, “Potensi Produksi Gas Metana (CH4) dari Kegiatan Landfilling di TPA Bengkala Kabupaten Buleleng dengan Kombinasi Permodelan LandGEM, IPCC, dan LCA,” J. Envirotek, vol. 15, no. 2, pp. 114–123, 2023, doi: 10.33005/envirotek.v15i2.262.

[7] A. I. Oukili, M. Mouloudi, and M. Chhiba, “LandGEM Biogas Estimation, Energy Potential and Carbon Footprint Assessments of a Controlled Landfill Site. Case of the Controlled Landfill of Mohammedia-Benslimane, Morocco,” J. Ecol. Eng., vol. 23, no. 3, pp. 116–129, 2022, doi: 10.12911/22998993/145410.

[8] N. Nurhadi, J. Windarta, D. Ginting, E. W. Sinuraya, and G. M. Pasaribu, “Evaluasi Pemanfaatan Gas TPA Menjadi Listrik, Studi Kasus TPA Jatibarang Kota Semarang,” J. Energi Baru dan Terbarukan, vol. 1, no. 1, pp. 20–27, 2020, doi: 10.14710/jebt.2020.8134.

[9] S. Chandra, R. Ganguly, and D. Parmar, “Assessment of gas generation and energy recovery from municipal solid waste in Kanpur city, India,” Environ. Monit. Assess., vol. 195, no. 9, 2023, doi: 10.1007/s10661-023-11727-3.

[10] C. Ramprasad, A. Anandhu, and A. Abarna, “Quantification of Methane Emissions Rate Using Landgem Model and Estimating the Hydrogen Production Potential from Municipal Solid Waste Landfill Site,” Nat. Environ. Pollut. Technol., vol. 22, no. 4, pp. 1845–1856, 2023, doi: 10.46488/NEPT.2023.v22i04.012.

[11] S. Özata and G. D. Değermenci, “Estimation of landfill gas emissions at the solid waste disposal site of low-population regions with LandGEM and tabasaran–rettenberger mathematical models,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 46, no. 1, pp. 6606–6619, Dec. 2024, doi: 10.1080/15567036.2024.2350608.

[12] S. J. Sofan German, J. D. Arrieta Torres, A. Ruíz Garcés, and M. E. Doria Oviedo, “Evaluación energética de la formación de biogás obtenido de residuos sólidos urbanos del relleno sanitario mediante el modelo LandGEM,” Investig. e Innovación en Ing., vol. 11, no. 2, pp. 16–27, 2023, doi: 10.17081/invinno.11.2.6373.

[13] L. F. Ramírez Ríos, D. Becerra Moreno, and J. Y. Ortega Contreras, “Potential use of methane gas from the Villavicencio sanitary landfill, Colombia,” Ing. y Compet., vol. 26, no. 2, 2024, doi: 10.25100/iyc.v26i2.14019.

[14] A. I. Safia, T. Meriem, A. Fatiha, and A. Ahmed, “Assessment of methane emissions from landfills in five major cities of Algeria: comparative analysis of calculation models and study on methane-to-electricity conversion,” Stud. Eng. Exact Sci., vol. 5, no. 2, p. e5407, 2024, doi: 10.54021/seesv5n2-007.

[15] V. A. Kusuma, B. Hasanah, and S. Slamet, “Forecasting Potensi Energi Gas Metana menggunakan Pembangkit Listrik Tenaga Sampah (PLTSa) pada TPA Manggar kota Balikpapan,” JEECAE (Journal Electr. Electron. Control. Automot. Eng., vol. 5, no. 2, pp. 16–22, 2020, doi: 10.32486/jeecae.v5i2.533.

[16] M. Bonamente, “The Linear Correlation Coefficient BT - Statistics and Analysis of Scientific Data,” M. Bonamente, Ed., Singapore: Springer Nature Singapore, 2022, pp. 263–276. doi: 10.1007/978-981-19-0365-6_14.

[17] Badan Standarisasi Nasional, “Standar Nasional Indonesia Spesifikasi timbulan sampah untuk kota kecil dan kota sedang di Indonesia,” Badan Standarisasi Nas., pp. 1–4, 1995.

[18] A. Alexander, C. Burklin, and A. Singleton, “Panduan Pengguna Model (LandGEM) Versi 3.02,” pp. 1–9, 2012.

[19] S. Dhea Amanda zahwa, “Mekanisme Kerja Pembangkit Listrik Tenaga Sampah (PLTSa),” Pengemb. Pendidik., vol. 8, no. 1, pp. 120–130, 2024, [Online]. Available: https://jurnalhost.com/index.php/jpp/article/view/570/722

[20] R. S. S. Sudewi, A. Sasmito, and R. Kurniawan, “Identifikasi Ambang Batas Curah Hujan Saat Kejadian Banjir Di Jabodetabek: Studi Kasus Banjir Jakarta Tanggal 09 Februari 2015,” J. Meteorol. dan Geofis., vol. 16, no. 3, pp. 209–215, 2015, doi: 10.31172/jmg.v16i3.315.

[21] F. Zulfikarijah, E. Handayanto, and M. Jihadi, “Peningkatan pengetahuan dan kesadaran masyarakat dalam pengelolaan sampah untuk mewujudkan lingkungan sehat dan produktif 1,” vol. 08, no. 02, pp. 139–148, 2024.

[22] S. F. Jayadi, L. Destiarti, and B. Sitorus, “Pembuatan Reaktor Fotokatalis dan Aplikasinya untuk Degradasi Bahan Organik Air Gambut menggunakan Katalis TiO2,” Jur. Fis. UIN SGD Bandung, vol. 2, no. 1, pp. 1–5, 2017, [Online]. Available: https://www.mysciencework.com/publication/show/e5ddc2e689813683fc664487b710bc73%0Ahttp://journal.ipb.ac.id/index.php/jpsl/article/view/13431

[23] T. Abdullah, N. R. Hidayat, and H. Sholehah, “Jurnal Presipitasi Potensi Kandungan Gas Metana sebagai Sumber Energi,” presipitasi, vol. 17, no. 3, pp. 334–343, 2020.

[24] F. Sinaga, D. M. Napitupulu, and H. Syarifuddin, “Estimasi Produksi Gas Metana Untuk Pemanfaatan Sebagai Sumber Energi Di TPA Talang Gulo, Jambi,” J. Daur Lingkung., vol. 6, no. 1, p. 12, 2023, doi: 10.33087/daurling.v6i1.184.

[25] B. Dimishkovska, A. Berisha, and K. Lisichkov, “Estimation of methane emissions from Mirash municipal solid waste sanitary landfill, differences between IPPC 2006 and LandGEM method,” J. Ecol. Eng., vol. 20, no. 5, 2019.

[26] H. Syarifuddin, Y. G. Wibowo, D. Devitriano, M. Afdal, and J. Jalius, “Landfill Gas Prospect as a Renewable Energy Source at Talang Gulo Jambi City, Jambi Province, Indonesia,” Ecol. Eng. Environ. Technol., vol. 24, no. 8, pp. 311–320, 2023.

[27] K. A. Rodrigue, K. Essi, K. M. Cyril, and T. Albert, “Estimation of methane emission from Kossihouen sanitary landfill and its electricity generation potential (Côte d’Ivoire),” J. Power Energy Eng., vol. 6, no. 07, pp. 22–31, 2018.

[28] E. F. Aghdam, A. M. Fredenslund, J. Chanton, P. Kjeldsen, and C. Scheutz, “Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis,” Waste Manag., vol. 73, pp. 220–229, 2018.

[29] I. Sohoo, M. Ritzkowski, Z. A. Sohu, S. Ö. Cinar, Z. K. Chong, and K. Kuchta, “Estimation of methane production and electrical energy generation from municipal solid waste disposal sites in Pakistan,” Energies, vol. 14, no. 9, p. 2444, 2021.

[30] X. Wang, A. S. Nagpure, J. F. DeCarolis, and M. A. Barlaz, “Characterization of uncertainty in estimation of methane collection from select US landfills,” Environ. Sci. Technol., vol. 49, no. 3, pp. 1545–1551, 2015.

[31] F. B. De la Cruz et al., “Comparison of field measurements to methane emissions models at a new landfill,” Environ. Sci. Technol., vol. 50, no. 17, pp. 9432–9441, 2016.

Downloads

Published

20/03/2025

Issue

Section

Articles

How to Cite

[1]
“Pemanfaatan Model LandGem Untuk Potensi Gas Metana di TPAS Sekoto Menjadi Sumber Energi”, jse, vol. 10, no. 2, Mar. 2025, Accessed: Mar. 22, 2025. [Online]. Available: https://jse.serambimekkah.id/index.php/jse/article/view/760

Similar Articles

1-10 of 92

You may also start an advanced similarity search for this article.