Customer Segmentation Analysis with RFM Model (Recency, Frequency, Monetary) and K-Means Clustering: Case Study of Bottled Water Sales at PT XYZ
Keywords:
Customer Segementation, Data Mining, K-Means Clustering, Marketing Strategy, RFMAbstract
Customer segmentation is a crucial process in understanding consumer behavior patterns to support strategic decision making in marketing. The main challenge faced by companies is to accurately group customers based on transaction data. The purpose of this study is to find out and segment customers using the algorithm K-Means clustering based on RFM model (Recency, Frequency, Monetary) on Bottled Water sales transaction data at PT XYZ. The research method involves analysis of 111 customer data processed using software Orange Data Mining, with validation of results using Silhouette Score which is useful in determining the amount cluster ideal. This research produced four cluster customers, with Cluster 4 reflects customers with the highest level of loyalty, marked by a value Frequency And Monetary the dominant one, while Cluster 3 describes customers with low loyalty potential. The results of this study provide a scientific basis for the development of more focused and efficient data-based marketing strategies.
References
[1] Z. Setiawan, Y. Zebus, Rony, Sandra, D. Suprayitno, S. Hamid, Rahmad, V. Islami, and A. Marsyaf, Buku Ajar Perilaku Konsumen. Jambi: PT. Sonpedia Publishing Indonesia, 2024.
[2] E. F. L. Awalina and W. I. Rahayu, “Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail,” J. Teknol. dan Inf., vol. 13, no. 2, pp. 122–137, 2023, doi: 10.34010/jati.v13i2.10090.
[3] A. Perdana, Satria, F. Florentin, Sara, and A. Santoso, “Analisis Segmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasus Aplikasi Alfagift,” Sebatik, vol. 26, no. 2, pp. 446–457, 2022, doi: 10.46984/sebatik.v26i2.2134.
[4] M. G. H. Fawzi, A. S. Iskandar, H. Erlangga, Nurjaya, and S. Denok, Strategi Pemasaran. Tangerang Selatan: Pascal Book, 2021.
[5] E. Yunus, Manajemen Strategis. Yogyakarta: CV ANDI OFFSET, 2016.
[6] W. A. Taqwim, N. Y. Setiawan, and A. Bachtiar, Fitra, “Analisis Segmentasi Pelanggan Dengan RFM Model Pada Pt . Arthamas Citra Mandiri Menggunakan Metode Fuzzy C-Means Clustering,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1986–1993, 2019.
[7] K. Auliasari and M. Kertaningtyas, “Penerapan Algoritma K-Means Untuk Segmentasi Konsumen Menggunakan R,” J. Teknol. Manaj. Inform., vol. 5, no. 1, pp. 42–49, 2019, doi: 10.59134/jsk.v5i2.386.
[8] B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering,” JUTEI, vol. 2, no. 1, pp. 23–32, 2018, doi: 10.21460/jutei.2017.21.76.
[9] S. Wahyuni, T. T. Wulansari, and F. Fahrullah, “Segmentasi Pelanggan Berdasarkan Analisis Recency, Frequency, Monetary Menggunakan Algoritma K-Means Pada CV. Toedjoe Sinar Group,” J. Rekayasa Teknol. Inf., vol. 7, no. 2, pp. 180–187, 2023, doi: 10.30872/jurti.v7i2.8748.
[10] T. D. Nursanti et al., Entrepreneurship. Jambi: PT Sonpedia Publishing Indonesia, 2024.
[11] E. Bykova, I. Vasiliev, V. Bosneaga, and V. Suslov, “Application of Neural Networks for Forecasting Energy Security Indicators,” Int. J. Sci. Eng. Res., vol. 12, no. 11, pp. 5–11, 2024.
[12] B. M. Wildemuth, Application of Social Reserch Methods to Questions in Information and Library Science. California: ABC-CLIO, LLC, 2017.
[13] J. W. Osborne, Best Practice in Data Cleaning. California: SAGE Publications, 2013.
[14] A. Hermawan et al., “Optimalisasi Strategi Pemasaran Melalui Analisis RFM pada Dataset Transaksi Ritel Menggunakan Python,” J. Manaj. Ris. Inov., vol. 2, no. 4, pp. 254–267, 2024.
[15] M. Reyes, Consumer Behavior and Marketing. London: Intech Open, 2020.
[16] N. Trianasari and T. A. Permadi, “Analysis of Product Recommendation Models at Each Fixed Broadband Sales Location Using K-Means, DBSCAN, Hierarchical Clustering, SVM, RF, and ANN,” J. Appl. Data Sci., vol. 5, no. 2, pp. 636–652, 2024, doi: 10.47738/jads.v5i2.210.
[17] V. R. Hananto, A. D. Churniawan, and A. P. Wardhanie, “Perancangan Analytical CRM untuk Mendukung Segmentasi Pelanggan di Institusi Pendidikan,” J. Ilm. Teknol. Inf. Asia, vol. 11, no. 1, pp. 79–88, 2017, doi: 10.32815/jitika.v11i1.55.
[18] K. M. Shaliha, Angelyna, A. A. Nugraha, M. H. Wahisyam, and T. K. Sandi, “Implementasi K-Means Clustering pada Online Retail berdasarkan Recency , Frequency , dan Monetary,” Gunung Djati Conf. Ser., vol. 3, no. 1, pp. 99–106, 2021.
[19] M. Rizki, D. Devrika, F. S. Lubis, Silvia, and I. H. Umam, “Aplikasi Data Mining dalam Penentuan Layout Swalayan dengan Menggunakan Metode MBA,” J. Has. Penelit. dan Karya Ilm., vol. 5, no. 2, pp. 130–138, 2019.
[20] H. Kusumo, E. Sediyono, and M. Marwata, “Analisis Algoritma Apriori Untuk Mendukung Strategi Promosi Perguruan Tinggi,” Walisongo J. Inf. Technol., vol. 1, no. 1, pp. 51–62, 2019.
[21] R. Gustriansyah, N. Suhandi, and F. Antony, “Clustering optimization in RFM Analysis Based on K-Means,” Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 1, pp. 470–477, 2020, doi: 10.11591/ijeecs.v18.i1.pp470-477.
[22] I. Sabuncu, E. Turkan, and H. Polat, “Customer Segmentation and Profiling with RFM,” Turkish J. Mark., vol. 5, no. 1, pp. 22–36, 2020.
[23] N. C. Sastya and I. Nugraha, “Penerapan Metode CRISP-DM dalam Menganalisis Data untuk Menentukan Customer Behavior di MeatSolution,” J. Pendidik. dan Apl. Ind., vol. 10, no. 2, pp. 103–115, 2023, doi: 10.33592/unistek.v10i2.3079.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ema Rosary Sitorus, Isna Nugraha (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.