Perbandingan Efisiensi Energi dan Kualitas Produk pada Teknologi Termal Pirolisis dan Gasifikasi Sampah Plastik: Studi Literatur
Keywords:
Energi, Gasifikasi, Pirolisis, Sampah Plastik, Teknologi TermalAbstract
The problem of plastic waste generation is increasingly pressing in Indonesia. Thermal technology offers an alternative solution that is more environmentally friendly in managing plastic waste. This literature study aims to compare pyrolysis and gasification technologies in converting plastic waste into energy. The analysis was carried out by reviewing various relevant studies. The results of the study indicate that both technologies have the potential to reduce plastic waste generation and produce value-added products. Pyrolysis is a thermal decomposition process without oxygen that produces oil, gas, and charcoal. Gasification produces syngas that can be used as fuel. This process requires limited oxygen and produces more diverse emissions. The comparison between pyrolysis and gasification shows that the selection of the right technology depends on several factors, such as the type of plastic, the desired product quality, and environmental considerations. Pyrolysis is more suitable for oil production, while gasification is more flexible in producing various types of gas products. Overall, both pyrolysis and gasification have great potential in managing plastic waste. However, further research is needed to optimize the process and reduce environmental impacts. Thus, thermal technology can be a sustainable solution in overcoming the problem of plastic waste in Indonesia.
References
[1] M. W. Saputra, E. Lissa, dan D. Sumaryono, “Peran Promotor Kesehatan Terhadap Perilaku Membuang Sampah Pada Masyarakat,” J. Promosi Kesehat. Poltekkes Bengkulu, vol. 4, no. 1, hal. 1–9, 2024, doi: https://doi.org/10.33088/jurnalprosehatkuu.v3i1.587.
[2] T. Artiningrum, “Potensi Emisi Metana (CH4) Dari Timbulan Sampah Kota Bandung,” Geoplanart, vol. 1, no. 1, hal. 36–44, 2018.
[3] N. El Fajri et al., “Ecobrick Sebagai Solusi Penanggulangan Sampah Plastik di Desa Tambak,” J. Pengabdi. Kpd. Masy., vol. 2, no. 1, hal. 1–12, 2022.
[4] N. Darus et al., “An Overview of Plastic Waste Recycling in the Urban Areas of Java Island in Indonesia,” J. Environ. Sci. Sustain. Dev., vol. 3, no. 2, hal. 402–415, 2020, doi: 10.7454/jessd.v3i2.1073.
[5] T. Xayachak, N. Haque, D. Lau, R. Parthasarathy, dan B. K. Pramanik, “Assessing the Environmental Footprint of Plastic Pyrolysis and Gasification: A Life Cycle Inventory Study,” Process Saf. Environ. Prot., vol. 173, no. February, hal. 592–603, 2023, doi: 10.1016/j.psep.2023.03.061.
[6] M. Taufiqurrohman dan M. Yusuf, “Pemanfaatan Energi Terbarukan dalam Pengolahan Daur Ulang Limbah,” J. Mentari Manajemen, Pendidik. dan Teknol. Inf., vol. 1, no. 1, hal. 46–57, 2022, doi: 10.34306/mentari.v1i1.141.
[7] S. Ratnawati, “Processing of Plastic Waste Into Alternative Fuels in The Form of Grounded (Pertalastic) Through Pirolysis Process in Science Laboratory of MTsN 3 West Aceh,” Indones. J. Chem. Sci. Technol., vol. 3, no. 1, hal. 8, 2020, doi: 10.24114/ijcst.v3i1.18310.
[8] E. Hartulistiyoso, F. A. P. A. G. Sigiro, dan M. Yulianto, “Temperature Distribution of the Plastics Pyrolysis Process to Produce Fuel at 450oC,” Procedia Environ. Sci., vol. 28, no. SustaiN 2014, hal. 234–241, 2015, doi: 10.1016/j.proenv.2015.07.030.
[9] UNEP, “Converting Waste Plastics Into a Resources,” Assess. Guidel., hal. 73, 2009.
[10] Y. Bow, Zulkarnain, S. P. Lestari, S. R. Sihombing, S. A. Kharissa, dan Y. A. Salam, “Pengolahan Sampah Low Density Polyethylene (LDPE) Dan Polypropylene (PP) Menjadi Bahan Bakar Cair Alternatif Menggunakan Prototipe Pirolisis Thermal Cracking,” J. Kinet., vol. 9, no. 03, hal. 1–6, 2018, [Daring]. Tersedia pada: https://jurnal.polsri.ac.id/index.php/kimia/index
[11] M. L. Henriksen, C. B. Karlsen, P. Klarskov, dan M. Hinge, “Plastic Classification Via in-line Hyperspectral Camera Analysis and Unsupervised Machine Learning,” Vib. Spectrosc., vol. 118, no. September 2021, hal. 103329, 2022, doi: 10.1016/j.vibspec.2021.103329.
[12] M. Minduro, I. N. Suarnadwipa, dan K. Astawa, “Pengaruh Variasi Sampah Plastik Jenis High Density Polyethylene ( HDPE ) , Low Density Polythylene ( LDPE ) , dan Polypropylene ( PP ) Terhadap Volume Minyak Hasil Pirolisis,” J. Ilm. Tek. Desain Mek., vol. 13, no. 3, 2024.
[13] T. R. Hidayani, E. Pelita, dan G. Gusfiyesi, “Analisis Sifat Fisika Pemanfaatan Pati Tandan Kosong Sawit dan Limbah Plastik LDPE sebagai Bahan Pembuatan Plastik Biodegradabel,” Maj. Kulit, Karet, dan Plast., vol. 33, no. 1, hal. 29, 2017, doi: 10.20543/mkkp.v33i1.2202.
[14] N. Hidayati et al., “Karakteristik Sampah Plastik di Laguna Segara Anakan Cilacap,” Pros. Semin. Nas. Lahan Suboptimal ke-10 Tahun 2022, vol. 6051, hal. 293–301, 2022.
[15] W. U. Eze, R. Umunakwe, H. C. Obasi, M. I. Ugbaja, C. C. Uche, dan I. C. Madufor, “Plastics Waste Management: A Review of Pyrolysis Technology,” Clean Technol. Recycl., vol. 1, no. 1, hal. 50–69, 2021, doi: 10.3934/ctr.2021003.
[16] M. S. Cahyono, M. R. P. Liestiono, dan C. Widodo, “Proses Pirolisis Sampah Plastik dalam Rotary Drum Reactor dengan Variasi Laju Kenaikan Suhu,” Pros. Semin. Nas. Teknoka, vol. 3, no. 2502, hal. 63, 2019, doi: 10.22236/teknoka.v3i0.2917.
[17] A. Vijayakumar dan J. Sebastian, “Pyrolysis Process to Produce Fuel from Different Types of Plastic - A review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 396, no. 1, hal. 0–8, 2018, doi: 10.1088/1757-899X/396/1/012062.
[18] W. J. Liu, W. W. Li, H. Jiang, dan H. Q. Yu, “Fates of Chemical Elements in Biomass during Its Pyrolysis,” Chem. Rev., vol. 117, no. 9, hal. 6367–6398, 2017, doi: 10.1021/acs.chemrev.6b00647.
[19] S. A. Salaudeen, P. Arku, dan A. Dutta, Gasification of Plastic Solid Waste and Competitive Technologies. Elsevier Inc., 2018. doi: 10.1016/B978-0-12-813140-4.00010-8.
[20] M. Kusenberg et al., “Opportunities and Challenges for the Application of Post-Consumer Plastic Waste Pyrolysis Oils as Steam Cracker Feedstocks: To Decontaminate or not to Decontaminate?,” Waste Manag., vol. 138, hal. 83–115, 2022, doi: 10.1016/j.wasman.2021.11.009.
[21] R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, dan A. S. Nizami, “Catalytic Pyrolysis of Plastic Waste: A Review,” Process Saf. Environ. Prot., vol. 102, hal. 822–838, 2016, doi: 10.1016/j.psep.2016.06.022.
[22] T. K. Dhaniswara dan Dian Fahriani, “Produksi Bahan Bakar Minyak (BBM) dari Sampah Botol Plastik Bekas Air Minum dengan Metode Pirolisis,” J. Res. Technol., vol. 7, no. 1, hal. 83–92, 2021, doi: 10.55732/jrt.v7i1.413.
[23] Seri Maulina dan Feni Sari Putri, “Pengaruh Suhu, Waktu, Dan Kadar Air Bahan Baku Terhadap Pirolisis Serbuk Pelepah Kelapa Sawit,” J. Tek. Kim. USU, vol. 6, no. 2, hal. 35–40, 2017, doi: 10.32734/jtk.v6i2.1581.
[24] A. A. Pagestu dan Y. Robbani, “Pemanfaatan Limbah Plastik Menjadi Bahan Bakar dengan Menggunakan Metode Pirolisis dan Penambahan Katalis Zeolit,” Institut Teknologi Sepuluh Nopember, 2018.
[25] I. Janajreh, I. Adeyemi, S. S. Raza, dan C. Ghenai, “A Review of Recent Developments and Future Prospects in Gasification Systems and Their Modeling,” Renew. Sustain. Energy Rev., vol. 138, no. February, hal. 110505, 2021, doi: 10.1016/j.rser.2020.110505.
[26] A. Antelava et al., “Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification,” Energy and Fuels, vol. 35, no. 5, hal. 3558–3571, 2021, doi: 10.1021/acs.energyfuels.0c04017.
[27] K. G. Burra dan A. K. Gupta, “Synergistic Effects in Steam Gasification of Combined Biomass and Plastic Waste Mixtures,” Appl. Energy, vol. 211, no. July 2017, hal. 230–236, 2018, doi: 10.1016/j.apenergy.2017.10.130.
[28] H. Xu dan B. Shi, “Design and System Evaluation of Mixed Waste Plastic Gasification Process Based on Integrated Gasification Combined Cycle System,” Processes, vol. 10, no. 3, 2022, doi: 10.3390/pr10030499.
[29] P. Basu, Biomass Gasification and Pyrolysis. Elsevier Inc., 2010.
[30] M. Mojaver, R. Hasanzadeh, T. Azdast, dan C. B. Park, “Comparative Study on Air Gasification of Plastic Waste and Conventional Biomass Based on Coupling of AHP/TOPSIS Multi-Criteria Decision Analysis,” Chemosphere, vol. 286, no. P3, hal. 131867, 2022, doi: 10.1016/j.chemosphere.2021.131867.
[31] F. Zhang et al., “Current Technologies for Plastic Waste Treatment: A review,” J. Clean. Prod., vol. 282, hal. 124523, 2021, doi: 10.1016/j.jclepro.2020.124523.
[32] N. Kholidah, “Pengaruh Temperatur terhadap Persentase Yield pada Proses Perengkahan Katalitik Sampah Plastik menjadi Bahan Bakar Cair,” ALKIMIA J. Ilmu Kim. dan Terap., vol. 2, no. 1, hal. 28–33, 2018, doi: 10.19109/alkimia.v2i1.2259.
[33] M. Sogancioglu, E. Yel, dan G. Ahmetli, “Pyrolysis of Waste High Density Polyethylene (HDPE) and Low Density Polyethylene (LDPE) Plastics and Production of Epoxy Composites with Their Pyrolysis Chars,” J. Clean. Prod., vol. 165, hal. 369–381, 2017, doi: 10.1016/j.jclepro.2017.07.157.
[34] S. Honus, S. Kumagai, G. Fedorko, V. Molnár, dan T. Yoshioka, “Pyrolysis gases produced from individual and mixed PE, PP, PS, PVC, and PET—Part I: Production and physical properties,” Fuel, vol. 221, no. January, hal. 346–360, 2018, doi: 10.1016/j.fuel.2018.02.074.
[35] A. Ephraim, D. Pham Minh, D. Lebonnois, C. Peregrina, P. Sharrock, dan A. Nzihou, “Co-pyrolysis of Wood and Plastics: Influence of Plastic Type and Content on Product Yield, Gas Composition and Quality,” Fuel, vol. 231, no. July 2017, hal. 110–117, 2018, doi: 10.1016/j.fuel.2018.04.140.
[36] D. A. Lubis, A. Arifin, dan Y. Fitrianingsih, “Pengolahan Sampah Plastik HDPE (High Density Polyethylene) dan PET (Polyethylene Terephtalate) Sebagai Bahan Bakar Alternatif dengan Proses Pirolisis,” J. Ilmu Lingkung., vol. 20, no. 4, hal. 735–742, 2022, doi: 10.14710/jil.20.4.735-742.
[37] C. Cao, C. Bian, G. Wang, B. Bai, Y. Xie, dan H. Jin, “Co-Gasification of Plastic Wastes and Soda Lignin in Supercritical Water,” Chem. Eng. J., vol. 388, no. December 2019, hal. 124277, 2020, doi: 10.1016/j.cej.2020.124277.
[38] M. Ajorloo, M. Ghodrat, J. Scott, dan V. Strezov, “Experimental Analysis of The Effects of Feedstock Composition on the Plastic and Biomass Co-Gasification Process,” Renew. Energy, vol. 231, no. June, 2024, doi: 10.1016/j.renene.2024.120960.
[39] Y. Hu et al., “Investigation of Biomass Gasification Potential in Syngas Production: Characteristics of Dried Biomass Gasification Using Steam as the Gasification Agent,” Energy and Fuels, vol. 34, no. 1, hal. 1033–1040, 2020, doi: 10.1021/acs.energyfuels.9b02701.
[40] M. N. Kaydouh dan N. El Hassan, “Thermodynamic Simulation of the Co-Gasification of Biomass and Plastic Waste for Hydrogen-Rich Syngas Production,” Results Eng., vol. 16, no. August, 2022, doi: 10.1016/j.rineng.2022.100771.
[41] L. N. Qolifah, N. E. Wahyuningsih, dan Y. H. Darundiati, “Karakteristik Risiko Kesehatan Non Karsinogenik Akibat Paparan Gas SO2 dan NO2 pada Pemulung di TPA Jatibarang Kota Semarang,” J. Kesehat. Lingkung. Indones., vol. 23, no. 1, hal. 50–58, 2024, doi: 10.14710/jkli.23.1.50-58.
[42] S. Saxena, “Pyrolysis and beyond: Sustainable valorization of plastic waste,” Appl. Energy Combust. Sci., vol. 21, no. July 2024, 2025, doi: 10.1016/j.jaecs.2024.100311.
[43] A. S. Ouedraogo, R. S. Frazier, dan A. Kumar, “Comparative Life Cycle Assessment of Gasification and Landfilling for Disposal of Municipal Solid Wastes,” Energies, vol. 14, no. 21, 2021, doi: 10.3390/en14217032.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Shelly Noverly Arisani, Mila Dirgawati, Novi Fitria (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.