Development of a Smart IoT-Integrated Watering System for Moth Orchid (Phalaenopsis amabilis) Cultivation in the SMASHTHETIC Greenhouse
Keywords:
greenhouse, automatic irrigation, Internet of Things (IoT), arduino, irrigation efficiency, Phalaenopsis amabilis.Abstract
A greenhouse is a controlled environment designed to enhance plant productivity by regulating microclimatic conditions. However, in many greenhouse systems, the irrigation process is still performed manually, resulting in suboptimal water use efficiency and inconsistent watering schedules. The SMASHTHETIC greenhouse serves as a cultivation facility for the moth orchid (Phalaenopsis amabilis), which requires precise control of substrate moisture and ambient humidity to ensure optimal growth and flowering. This study aims to design and implement an automatic irrigation system based on Arduino and the Internet of Things (IoT) to improve irrigation efficiency in the SMASHTHETIC greenhouse. The system consists of a soil moisture sensor, Arduino microcontroller, Wi-Fi module (ESP8266/ESP32), and actuators such as a water pump and solenoid valve to regulate water flow. IoT integration enables real-time monitoring and remote control via web and smartphone applications. Experimental results show that the system automatically adjusts watering frequency and duration based on soil moisture data, providing convenience for users and reducing manual intervention. Therefore, this study demonstrates that the integration of Arduino and IoT technologies in greenhouse irrigation supports the development of smart agriculture practices that are more efficient, sustainable, and productive.
References
[1] R. A. Najikh, M. Hannats, H. Ichsan, and W. Kurniawan, “Monitoring Kelembaban, Suhu, Intensitas Cahaya Pada Tanaman Anggrek Menggunakan ESP8266 Dan Arduino Nano,” Malang, Nov. 2018. [Online]. Available: http://j-ptiik.ub.ac.id
[2] Balai Penelitian Tanaman Hias, “Budidaya Anggrek Dendrobium,” Balai Penelitian Tanaman Hias, Accessed: Sep. 21, 2024. [Online]. Available: https://ppid.pertanian.go.id/doc/1/Budidaya%20Anggrek%20Dendrobium.pdf
[3] D. S. Badriah, “Budidaya Anggrek Phalaenopsis,” Balai Penelitian Tanaman Hias, Accessed: Sep. 21, 2024. [Online]. Available: https://ppid-pertanian-go-id.webpkgcache.com/doc/-/s/ppid.pertanian.go.id/doc/1/Budidaya%20Anggrek%20Phalaenopsis.pdf
[4] A. W. Purwanto, ANGGREK Budi Daya dan Perbanyakan, 1st ed. Yogyakarta: LPPM UPN Veteran Yogyakarta Press, 2016. Accessed: Sep. 21, 2024. [Online]. Available: http://eprints.upnyk.ac.id/13657/1/Anggrek%20-%20Budi%20Daya%20dan%20Perbanyakan%20-%20Smallest_FullColor.pdf
[5] L. Aditya, P. Santosa, B. F. Triyanto, A. Bintang Pratama, and A. S. Fadilah, “Penerapan Alat Penyiram Otomatis Berbasis Mikrokontroler Menggunakan Energi Surya Dalam Mendukung Program Kampung Sejuta Anggrek Di Kelurahan Baru, Jakarta Timur,” 2024, doi: 10.24853/jpmt.6.2.98-105.
[6] A. Monawati, D. Rhomadhoni, and N. R. Hanik, “Identifikasi Hama dan Penyakit Pada Tanaman Anggrek Bulan (Phalaenopsis amabilis),” Florea : Jurnal Biologi dan Pembelajarannya, vol. 8, no. 1, p. 12, May 2021, doi: 10.25273/florea.v8i1.9002.
[7] N. Prahasti, N. Setiari, and E. Saptiningsih, “Respon Pertumbuhan Dan Densitas Stomata Anggrek (Phalaenopsis Hibrid) Pada Frekuensi Penyiraman Berbeda Selama Periode Aklimatisasi,” Agrin, vol. 26, no. 1, p. 1, Oct. 2022, doi: 10.20884/1.agrin.2022.26.1.654.
[8] R. Rizal Putra et al., “Pengaruh Cahaya Dan Temperatur Terhadap Pertumbuhan Tunas Dan Profil Protein Tanaman Anggrek Phalaenopsis Amabilis Transgenik Pembawa Gen Ubipro::PaFT,” Bioeksperimen, vol. 2 (2), no. 2, Sep. 2016, Accessed: Sep. 21, 2024.
[9] W.-J. Guo, Y.-Z. Lin, and N. Lee, “Photosynthetic Light Requirements and Effects of Low Irradiance and Daylength on Phalaenopsis amabilis,” 2012.
[10] David Setiawan, Abrar Tanjung, Latifa Siswati, and Masnur P.H., “Desain Sistem Penyiraman Dan Pemupukan Otomatis Menggunakan Timer Switch, Mikrokontroler, Dan Sensor Kelembaban,” Jurnal Teknik, vol. 18 (2), pp. 32–36, Oct. 2024.
[11] S. Dwiyatno, E. Krisnaningsih, D. Ryan Hidayat, and Sulistiyono, “Smart Agriculture Monitoring Penyiraman Tanaman Berbasis Internet Of Things,” PROSISKO: Jurnal Pengembangan Riset dan Observasi Sistem Komputer, vol. 9, no. 1, pp. 38–43, May 2022, doi: 10.30656/prosisko.v9i1.4669.
[12] R. Alamsyah, E. Ryansyah, A. Y. Permana, and R. Mufidah, “Sistem Penyiraman Tanaman Otomatis Menggunakan Logika Fuzzy Dengan Teknologi Internet Of Things Berbasis ESP8266 dan Aplikasi Blynk,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4007.
[13] S. Nurrahmi, N. Miseldi, and S. H. Syamsu, “Rancang Bangun Sistem Penyiraman Otomatis pada Green House Tanaman Anggrek Menggunakan Sensor DHT22,” JPF (Jurnal Pendidikan Fisika) Universitas Islam Negeri Alauddin Makassar, vol. 11, no. 1, pp. 33–43, Jan. 2023, doi: 10.24252/jpf.v11i1.33419.
[14] D. Aulia Riantizal, L. F. Lhaura Van, Y. Yunefri, Y. Ersan Fadrial, L. Kuning, and J. K. Yos Sudarso, “Alat Penyiraman Tanaman Otomatis Berbasis Iot Menggunakan metode Fuzzy Logic,” 2023.
[15] G. B. Sulistyo, L. A. Safitri, S. Kiswati, B. K. Adjie, and M. N. Z. Fauzi, “Penerapan Sistem Smart Garden Berbasis Internet of Things pada Tanaman Anggrek di Kelompok Wanita Tani Indah Lestari,” JPPM (Jurnal Pengabdian dan Pemberdayaan Masyarakat), vol. 8, no. 1, p. 75, Feb. 2024, doi: 10.30595/jppm.v8i1.20910.
[16] A. Sudarmaji, B. Gunawan, F. Nugraha, N. Arini, and S. Mulyani, “Smart Soil Moisture Control Based on IoT ESP-32 for Horticulture Cultivation in Coastal Area,” BIO Web Conf, vol. 96, p. 04001, Mar. 2024, doi: 10.1051/bioconf/20249604001.
[17] G. P. Pereira, M. Z. Chaari, and F. Daroge, “IoT-Enabled Smart Drip Irrigation System Using ESP32,” IoT, vol. 4, no. 3, pp. 221–243, Jul. 2023, doi: 10.3390/iot4030012.
[18] D. Dwi, P. Wibowo, V. S. Saridewi, F. M. Setiawan, and A. Rezagama, “Comparison between Manual Irrigation System and Automatic Irrigation System Based-on Soil Moisture,” 2019. [Online]. Available: http://ijses.com/
[19] A. M. Okasha, H. G. Ibrahim, A. H. Elmetwalli, K. M. Khedher, Z. M. Yaseen, and S. Elsayed, “Designing Low-Cost Capacitive-Based Soil Moisture Sensor and Smart Monitoring Unit Operated by Solar Cells for Greenhouse Irrigation Management.,” Sensors (Basel), vol. 21, no. 16, Aug. 2021, doi: 10.3390/s21165387.
[20] X. Liu, Z. Zhao, and A. Rezaeipanah, “Intelligent and automatic irrigation system based on internet of things using fuzzy control technology,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-98137-2.
[21] A. Ali, T. Hussain, and A. Zahid, “Smart Irrigation Technologies and Prospects for Enhancing Water Use Efficiency for Sustainable Agriculture,” Apr. 01, 2025, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/agriengineering7040106.
[22] A. A. El-Sheshny, A. M. Abdel-Hameed, M. A. Al-Rajhi, H. G. Ghanem, T. M. Elzanaty, and M. H. Fayed, “Optimizing water management in greenhouse farming through an IoT-enabled monitoring system,” Journal of the Saudi Society of Agricultural Sciences, vol. 24, no. 4, Aug. 2025, doi: 10.1007/s44447-025-00039-2.
[23] A. Julianto Pratama and R. Mandela, “Evaluating the Effectiveness of Smart Irrigation Systems in Improving Agricultural Productivity,” 2024. [Online]. Available: https://heijournal.id/index.php/apj
[24] B. Nsoh et al., “Internet of Things-Based Automated Solutions Utilizing Machine Learning for Smart and Real-Time Irrigation Management: A Review,” Dec. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s24237480.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ayu Ratna Permanasari, Harita Nurwahyu Chamidy, Bevi Lidya, Ari Marlina, Endang Widiastuti, In Jumanda Kasdadi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.











