Analisis Pengaruh Asam Organik dari Cangkang Kelapa dengan Metode Pirolisis Terhadap Proses Reduksi Scale di Industri Minyak
Keywords:
Pirolisis, Asam Organik, Cangkang Kelapa , Scale, Reduksi, FenolAbstract
Scale problems in the oil industry have become a serious challenge because they can clog piping systems and reduce operational efficiency. This study aims to evaluate the effectiveness of organic acids from coconut shell pyrolysis as an environmentally friendly scale reducer and compare it with HCl solutions at various concentrations. Pyrolysis was carried out at a temperature of 500°C for 30 minutes to produce bio-oil rich in phenolic compounds and organic acids. Characterization using GC-MS showed the dominance of phenol compounds, 2-methoxy phenol, and 2,6-dimethoxy phenol which play an active role in the reduction process. Reduction tests were carried out on Fe₂O₃, Fe₃O₄, and FeSO4-based scales with time variations of 5-40 minutes, and 5-30% HCl as a comparison. The results showed that organic acid was able to reduce scale by up to 36.03% in 40 minutes, equivalent to 15% HCl (37.85% at 20 minutes) and 25% HCl (37.45% at 10 minutes). The optimum effectiveness of organic acid occurred at 30.04% at the 25th minute. Although HCl showed a higher reduction capacity, organic acid was considered safer for the environment and metal infrastructure. This study indicates that bio-oil from coconut shell pyrolysis has potential as a sustainable alternative for scale reduction.
References
[1] Hidayat, M. T., & Untoro, E. (2022, December). Analisis Penanggulangan dan Pencegahan Problem Scale pada Flowline Sumur PMB-XXX PT Pertamina Hulu Rokan Prabumulih Field. In Prosiding Seminar Nasional Teknologi Energi dan Mineral (Vol. 2, No. 1, pp. 27-34). 10.53026/sntem.v2i1.905
[2] Astuti, D. I., Gusmawarnni, S. R., dan Budi, M. S. P. (2024). Studi Perkiraan Potensi Pembentukan Indeks Scale Calcium Carbonate Dari Sampel Brine Sintetik (Variabel CO3 dalam Air Formasi). Rekayasa Teknologi Industri dan Informasi, 428-436.
[3] Evahelda, Astuti, R. P., dan Aini, S. N., Nurhadini. (2023). Pemanfaatan limbah tempurung kelapa untuk pembuatan asap cair menggunakan metode pirolisis. AGROMIX, 14(2), 175-181. https://doi.org/10.35891/agx.v11i1.1672
[4] Sorathiya, K. B., Melo, A., Hogg, M. C., & Pintado, M. (2025). Organic acids in food preservation: exploring synergies, molecular insights, and sustainable applications. Sustainability, 17(8), 3434.https://doi.org/10.3390/su17083434
[5] Andrika, Y. (2021). Pengaruh Asam Organik Hasil Pyrolysis Cangkang Kelapa Sawit Sebagai Pereduksi Scale Pada Pipa Distribusi. Dissertation, Universitas Islam Riau.
[6] Agrizzi, T., Oliveira, M. A., Faria, E. V., Santos, K. G., Xavier, T. P., & Lira, T. S. (2024). Assessing coconut shell pyrolysis: Biomass characterization, activation energy estimation, and statistical analysis of operating conditions. Bioresource Technology Reports, 26, 101831. https://doi.org/10.1016/j.biteb.2024.101831
[7] Afriliana, A. N., Salasiah, & Sanjaya, A. S. (2021). Pembuatan Bio Oil Dari Cangkang Kelapa Sawit Dengan Metode Pirolisis. Jurnal Chemurgy, 5(2), 53-60. http://dx.doi.org/10.30872/cmg.v5i2.4881
[8] Sari, D. R., & Ariani. (2021). Pengolahan Tempurung Kelapa Menjadi Arang dan Asap Cair dengan Metode Semi-Batch Pyrolisis. Distilat: Jurnal Teknologi Separasi, 7(2), 367-372. 10.33795/distilat.v7i2.236
[9] Gamal, H., Elkatatny, S., Al-Afnan, S., & Bahgat, M. (2021). Development of a unique organic acid solution for removing composite field scales. ACS omega, 6(2), 1205-1215. https://dx.doi/10.1021/acsomega.0c04335
[10] Afridhitama, Y. (2021). Analisis Pengaruh Ekstrak Daun Gambir Sebagai Inhibitor Organik Untuk Mereduksi Pembentukan Scale. Dissertation, Universitas Islam Riau.
[11] Gusfarozi, A. (2021). Analisis Penyebab Terbentuknya Scale Pada Pipa Produksi Di Lapangan X Dengan Metode Stiff & Davis Dan Metode Skillman, Mcdonald, Davis. Dissertation, Universitas Islam Riau.
[12] Anggraini, S. P. A., Suprapto, S., Juliastuti, S. R., & Mahfud, M. (2024). Optimization of pyrolytic oil production from coconut shells by microwave assisted pyrolysis using activated carbon as a microwave absorber. International Journal of Renewable Energy Development, 13(1), 145-157. https://doi.org/10.14710/ijred.2024.56287
[13] Wang, C., Xia, S., Cui, C., Kang, S., Zheng, A., Yu, Z., & Zhao, Z. (2022). Investigation into the correlation between the chemical structure of lignin and its temperature-dependent pyrolytic product evolution. Fuel, 329. https://doi.org/10.1016/j.fuel.2022.125215
[14] Mashuni, Y. N., Jahiding, M., Kadidae, L. O., Djaila, R., & Hamid, F. H. (2020). Analysis of liquid volatile matters from coconut shell pyrolysis by GC-MS and its potential as antifungal agent. Asian J. Chem, 32, 1728-1732. 10.14233/ajchem.2020.21657
[15] Novita, S. A., & Fudholi, A. (2023). Efficient Bio-Oil Production from Coconut Shells Using Parabolic Solar Pyrolysis. International Journal of Sustainable Development https://doi.org/10.18280/ijsdp.18120
[16] Amrullah, A., & Teguh, S. E. (2022). Coconut shell bio-oil distillation: Its characteristic and product distribution. IOP Conference Series: Earth and Environmental Science, 1038(1). IOP Publishing.
[17] Saires, P., Ariza Barraza, C., Bertero, M., Pujro, R., Falco, M., & Sedran, U. (2024). Characterization of Pyrolytic Tars Derived from Different Biomasses. Processes, 12(4), 817. https://doi.org/10.3390/pr12040817
[18] Arum, K. S., & Herawati, D. A. (2020). Pengaruh Suhu dan Waktu Reaksi Pembuatan FeSO4 Sintesis dan Karakterisasi Nanopartikel Fe2O3 dari Limbah Besi Bubut. Jurnal Kimia dan Rekayasa, 1, 40-47.
[19] Leba, M. A. U., Mau, S. D. B., Boelan, E. G., Taek, M. M., Ruas, J. D. C, Lawung, Y. D., Ruas, A. A. D.C., Kopon, A.M., & Ruas, N. A. (2023). Pigmen Umbi Ubi Jalar Ungu dan Rimpang Kunyit: Indikator Ramah Lingkungan dan Murah untuk Eksperimen Titrasi Asam-Basa. Journal of The Indonesian Society of Integrated Chemistry, 15(2), 99-109.
[20] Gonzalez, R. J., Patrick, M. L., & Val, A. L. (2024). Ion uptake in naturally acidic water. Journal of Comparative Physiology B, 194(5), 685-696. https://doi.org/10.1007/s00360-024-01552-6
[21] Malik, A., González-Gutiérrez, A. G., Calderón-Anaya, I. L., & Casillas, N. (2023). Evaluation of an organic acid descaling solution for removal calcareous scales on pipelines. Journal of Solid State Electrochemistry, 27(11), 3119-3128.
[22] Kulik, T., Nastasiienko, N., Palianytsia, B., Ilchenko, M., & Larsson, M. (2021). Catalytic pyrolysis of lignin model compound (ferulic acid) over alumina: Surface complexes, kinetics, and mechanisms. Catalysts, 11(12), 1508. https://doi.org/10.3390/catal11121508
[23] Malacaria, L., Corrente, G. A., Beneduci, A., Furia, E., Marino, T., & Mazzone, G. (2021). A review on coordination properties of Al (III) and Fe (III) toward natural antioxidant molecules: Experimental and theoretical insights. Molecules, 26(9), 2603.
[24] Bijlsma, J., de Bruijn, W. J., Hageman, J. A., Goos, P., Velikov, K. P., & Vincken, J. P. (2020). Revealing the main factors and two-way interactions contributing to food discolouration caused by iron-catechol complexation. Scientific Reports, 10(1), 8288.
[25] Santawaja, P., Kudo, S., Tahara, A., Asano, S., & Hayashi, J. I. (2022). Dissolution of iron oxides highly loaded in oxalic acid aqueous solution for a potential application in iron-making. isij international, 62(12), 2466 2475. https://doi.org/10.2355/isijinternational.ISIJINT-2020-726
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Aninda Arik Tanza Putri, Anerasari Meidinariasty, Linda Ekawati (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.











