Perbandingan Diameter Hydrocyclone untuk Menurunkan Kadar Kekeruhan dan Total Suspended Solids pada Unit Flokulasi Hydrocyclone
Keywords:
tss, turbidity, coagulation-flocculation, hydrocyclone, diameterAbstract
There are several types of water treatment, namely physical, chemical and biological, with each treatment process depending on the parameters of the pollutant to be treated. Raw water treatment generally uses physico-chemical treatment, which is useful for reducing the levels of pollutants such as TSS and turbidity, usually referred to as the coagulation-flocculation process. In the flocculation process there are different types of modifications, an example of modification is hydrocyclone flocculation. The aim of this research is to obtain information regarding the use of hydrocyclone flocculation reactors in the removal of pollutant parameters such as TSS. This research has been carried out by preparing 3 types of hydrocyclone flocculation reactors with different diameters (10 cm, 15 cm and 20 cm) where tests will be carried out to see the most optimal hydrocyclone flocculation diameter in eliminating TSS and turbidity parameters in the sample water. From the results of the research carried out, the most optimum diameter for the removal of TSS parameters and also turbidity in the sample water is a 20 cm hydrocyclone flocculation reactor with an average TSS removal percentage of 77.85% and an average turbidity removal percentage of 81%. Meanwhile, hydrocyclone flocculation reactor diameters of 10 cm and 15 cm have an average removal percentage of 60% and 70% for TSS, then for turbidity it is 59.8% and 62%.
References
[1] Tarigan, M. S., & Edward, E. (2010). Kandungan total zat padat tersuspensi (total suspended solid) di perairan Raha, Sulawesi Tenggara. Makara Journal of Science, 7(3), 13.
[2] Winoto, Eddyanto, and Selvia Aprilyanti. (2021). "Perbandingan Penggunaan Tawas dan PAC Terhadap Kekeruhan dan pH Air Baku PDAM Tirta Musi Palembang." Jurnal Redoks 6.2: 107-116.
[3] Rohana, H., & Asmoro, C. P. (2020). Optimization test of ipomoea batatas l. leaf extract as a flocculent in water treatment for practicum in chemical analysis of environment course. Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, January 2020. https://doi.org/10.4108/eai.12-10-2019.2296460
[4] Sripriya, R., Kaulaskar, M. D., Chakraborty, S., & Meikap, B. C. (2019). Studies on the performance of a hydrocyclone and modeling for flow characterization in presence and absence of air core. Chemical Engineering Science, 62(22), 6391–6402.
[5] Abdullah, T. (2018). Studi Penurunan Kekeruhan Air Permukaan dengan Proses Flokulasi Hydrocyclone Terbuka (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).
[6] Bahctiar, F. E., & Mirwan, M. (2024). Efektifitas Pengolahan Kombinasi Elektrokoagulasi-Filtrasi Dalam Menyisihkan TSS dan COD pada Air Limbah Kawasan Industri. Journal Serambi Engineering, 9(2 SE-Articles). https://doi.org/10.32672/jse.v9i2.1528
[7] Peraturan Pemerintah No 22 Tahun 2021. (2021). Peraturan Pemerintah Nomor 22 Tahun 2021 tentang Pedoman Perlindungan dan Pengelolaan Lingkungan Hidup. Sekretariat Negara Republik Indonesia, 1(078487A), 483. http://www.jdih.setjen.kemendagri.go.id/
[8] Lolo, E. U., Pambudi, Y. S., Gunawan, R. I., & Widianto, W. (2020). Pengaruh Koagulan PAC dan Tawas Terhadap Surfaktan dan Kecepatan Pengendapan Flok Dalam Proses Koagulasi Flokulasi. Jurnal Serambi Engineering, 5(4), 1295–1305. https://doi.org/10.32672/jse.v5i4.2315
[9] Vijay, V. K. V. K., & Agarwal, U. S. (2020). Studies on Centrifugal Clarification of Sugarcane Juice - Possibilities and Limitations. Development, X, 1–11.
[10] Kurniawan, A., & Chandra Wirasembada, Y. (2012). Penentuan Efektivitas Desain Unit Cyclone untuk Mereduksi Partikulat di Udara. https://www.researchgate.net/publication/304580427
[11] Prakoso, H. (2018). Uji Kinerja Unit Pengaduk Lambat Tipe Hidraulis. https://repository.its.ac.id/53213/%0Ahttps://repository.its.ac.id/53213/1/03211440000021-Undergraduate_Thesis.pdf
[12] Masduqi, A., Assomadi, A, F. 2012. Operasi dan Proses Pengolahan Air. Surabaya: itspress
[13] Iskandar, H. R., Saputra, D. I., & Yuliana, H. (2019). Eksperimental Uji Kekeruhan Air Berbasis Internet of Things Menggunakan Sensor DFRobot SEN0189 dan MQTT Cloud Server. Jurnal Umj, Sigdel 2017, 1–9.
[14] Kementerian Kesehatan. (2023). Permenkes No. 2 Tahun 2023. Kemenkes Republik Indonesia, 55, 1–175.
[15] Tsoutsa, E. K., Tolkou, A. K., Kyzas, G. Z., & Katsoyiannis, I. A. (2024). New Trends in Composite Coagulants for Water and Wastewater Treatment. Macromol, 4(3), 509–532. https://doi.org/10.3390/macromol4030030
[16] Al Bazedi, G. A., & Abdel-Fatah, M. A. (2020). Correlation between operating parameters and removal efficiency for chemically enhanced primary treatment system of wastewater. Bulletin of the National Research Centre, 44(1). https://doi.org/10.1186/s42269-020-00368-y
[17] Ozili, P. K. (2022). The Acceptable R-Square in Empirical Modelling for Social Science Research. SSRN Electronic Journal, January 2022. https://doi.org/10.2139/ssrn.4128165
[18] Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Steven Albert Christian Pohan, Aussie Amalia (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.