Energy Potential and Impact of Briquettes Produced from Soy Sauce Industry Soybean Waste and Sugarcane Bagasse
Keywords:
Biomass Briquette , Calorific Value, soybean dregs, sugarcane bagasse, co emissionsAbstract
Indonesia's energy demand continues to increase, but energy fulfillment still relies on coal, which has a negative impact on the environment. Seeing the potential of biomass as fuel, this study is intended to analyze the potential use of soybean dregs from soy sauce factories and sugarcane bagasse as fuel and to evaluate the characteristics of biomass briquettes according to the composition and particle size of the materials. Sugarcane bagasse and soy sauce bagasse were varied with a ratio of 63%:27%, 45%:45%, and 27%:63%, respectively with a mixture of 10% adhesive from cassava flour and molasses. The mesh size was chosen at 80 (177 μm) and 150 (99 μm) to compare the effect of particles <100 μm and >100 μm. Briquettes with characteristics that meet almost all aspect standards are briquettes with a composition of 27% soy sauce dregs and 63% sugarcane dregs with a mesh size of 150. The results of the water content are 4.20%, ash content 7.46%, volatile matter content 23.73%, and calorific value 5948 calories/gram. However, the results of the CO emission test in the early minutes of combustion (1287 ppm) did not meet the quality standard. This study proves that soy sauce dregs and sugarcane dregs waste can be an environmentally friendly alternative fuel with further emission control.
References
[1] P. Guitarra, “Kebutuhan Batu Bara Dalam Negeri Bisa 208,5 Juta Ton di 2025.,” Artikel CNBC Indonesia, 2022. https://www.cnbcindonesia.com/news/20220217173759-4-316265/kebutuhan-batu-bara-dalam-negeri-bisa-2085-juta-ton-di-2025
[2] R. B. Finkelman, A. Wolfe, and M. S. Hendryx, “The future environmental and health impacts of coal,” Energy Geosci., vol. 2, no. 2, 2021, doi: 10.1016/j.engeos.2020.11.001.
[3] M. Tao, W. Cheng, K. Nie, X. Zhang, and W. Cao, “Science of the Total Environment Life cycle assessment of underground coal mining in China,” vol. 805, no. 2022, 2025.
[4] R. M. R. Rangkuti, Erna Septiandini, and Adhi Purnomo, “Analisis Pemanfaatan Limbah Kertas Bekas dan Ampas Tebu sebagai Material Alternatif Pembuatan Dinding Partisi Ramah Lingkungan,” J. TESLINK Tek. Sipil dan Lingkung., vol. 6, no. 1, pp. 45–49, 2024, doi: 10.52005/teslink.v6i1.307.
[5] A. Abyaz, E. Afra, and A. Saraeyan, “Improving technical parameters of biofuel briquettes using cellulosic binders,” Energy Sources, Part A Recover. Util. Environ. Eff., 2020, doi: 10.1080/15567036.2020.1806955.
[6] M. Kunta, M. Syamsiro, and I. Wahyu, “Utilization of Soybean Dregs for Solid Fuel Production Through Hydrothermal Carbonization,” vol. 25, no. 6, pp. 4797–4803, 2021.
[7] O. F. Obi, R. Pecenka, and M. J. Clifford, “A Review of Biomass Briquette Binders and Quality Parameters,” Energies, vol. 15, no. 7. 2022. doi: 10.3390/en15072426.
[8] P. Donald, C. Sanchez, M. Me, T. Aspe, and K. N. Sindol, “An Overview on the Production of Bio-briquettes from Agricultural Wastes: Methods, Processes, and Quality,” J. Agric. Food Eng., vol. 3, no. 1, pp. 1–17, 2022, doi: 10.37865/jafe.2022.0036.
[9] F. Güleç, O. Williams, E. T. Kostas, A. Samson, and E. Lester, “A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction,” Energy Convers. Manag., vol. 270, 2022, doi: 10.1016/j.enconman.2022.116260.
[10] A. A. Adekunle et al., “A comprehensive review on the similarity and disparity of torrefied biomass and coal properties,” Renew. Sustain. Energy Rev., vol. 199, 2024, [Online]. Available: https://doi.org/10.1016/j.rser.2024.114502.
[11] J. A. Kumar, K. V. Kumar, M. Petchimuthu, S. Iyahraja, and D. V. Kumar, “Comparative analysis of briquettes obtained from biomass and charcoal,” in Materials Today: Proceedings, 2021, vol. 45. doi: 10.1016/j.matpr.2020.02.918.
[12] X. Wang, H. Firouzkouhi, J. C. Chow, J. G. Watson, W. Carter, and A. S. M. De Vos, “Characterization of gas and particle emissions from open burning of household solid waste from South Africa,” Atmos. Chem. Phys., vol. 23, no. 15, 2023, doi: 10.5194/acp-23-8921-2023.
[13] S. Anggraeni, S. N. Hofifah, A. B. D. Nandiyanto, and M. R. Bilad, “Effects of particle size and composition of cassava peels and rice husk on the briquette performance,” J. Eng. Sci. Technol., vol. 16, no. 1, 2021.
[14] Purwanto, Djoko. "Briket bahan bakar dari limbah tempurung kelapa sawit (Elaeis guineensis Jacq)." Indonesian Journal of Industrial Research 2.1 (2010): 27-34.
[15] J. C. Abineno, J. J. S. Dethan, F. J. H. Bunga, and E. Z. Haba Bunga, “Characterization and performance analysis of Kesambi branch biomass briquettes: A study on particle size effects,” J. Ecol. Eng., vol. 26, no. 1, pp. 213–222, 2025, doi: 10.12911/22998993/195643.
[16] A. Farahmand, S. Naji-Tabasi, and S. Shahbazizadeh, “Influence of selected salts and sugars on the rheological behavior of quince seed mucilage,” J. Agric. Sci. Technol., vol. 23, no. 2, pp. 333–347, 2021.
[17] A. A. Adeleke et al., “Ash analyses of bio-coal briquettes produced using blended binder,” Sci. Rep., vol. 11, no. 1, pp. 1–9, 2021, doi: 10.1038/s41598-020-79510-9.
[18] A. Nikiforov, A. Kinzhibekova, E. Prikhodko, A. Karmanov, and S. Nurkina, “Analysis of the Characteristics of Bio-Coal Briquettes from Agricultural and Coal Industry Waste,” Energies, vol. 16, no. 8, 2023, doi: 10.3390/en16083527.
[19] M. Lubwama, V. A. Yiga, and H. N. Lubwama, “Effects and interactions of the agricultural waste residues and binder type on physical properties and calorific values of carbonized briquettes,” Biomass Convers. Biorefinery, vol. 12, no. 11, 2022, doi: 10.1007/s13399-020-01001-8.
[20] T. Kebede, D. T. Berhe, and Y. Zergaw, “Combustion Characteristics of Briquette Fuel Produced from Biomass Residues and Binding Materials,” J. Energy, vol. 2022, 2022, doi: 10.1155/2022/4222205.
[21] R. Kabir Ahmad, S. Anwar Sulaiman, S. Yusup, S. Sham Dol, M. Inayat, and H. Aminu Umar, “Exploring the potential of coconut shell biomass for charcoal production,” Ain Shams Eng. J., vol. 13, no. 1, 2022, doi: 10.1016/j.asej.2021.05.013.
[22] E. G. Messay, A. A. Birhanu, J. M. Mulissa, T. A. Genet, W. A. Endale, and B. F. Gutema, “Briquette production from sugar cane bagasse and its potential as clean source of energy,” African J. Environ. Sci. Technol., vol. 15, no. 8, pp. 339–348, 2021, doi: 10.5897/ajest2021.3006.
[23] S. F. Elsisi, M. N. Omar, M. M. Azam, A. H. A. Eissa, and E. M. Gomaa, “Effect of Pyrolysis Process on the Properties of Briquettes Produced from Different Particle Size Peanut Shells and Grape Pruning Residues,” Biomass and Bioenergy, vol. 193, 2025, [Online]. Available: https://doi.org/10.1016/j.biombioe.2024.107532
[24] A. Nikiforov, E. Prikhodko, A. Kinzhibekova, A. Karmanov, and T. Alexiou Ivanova, “Analysis of the Efficiency of Burning Briquettes from Agricultural and Industrial Residues in a Layer,” Energies , vol. 17, no. 13, 2024, doi: 10.3390/en17133070.
[25] G. Li et al., “CO2 and air pollutant emissions from bio-coal briquettes,” Environ. Technol. Innov., vol. 29, 2023, doi: 10.1016/j.eti.2022.102975.
[26] M. A. Syuhada, “Tugas akhir analisis karakteristik asap briket dari berbagai kelas kuat kayu,” 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Agnes Lidya Claudya, Aulia Ulfah Farahdiba, Yayok Suryo Purnomo (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.











